RESUMO
Signaling by the evolutionarily conserved mitogen-activated protein kinase or extracellular signal-regulated kinase (MAPK/ERK) plays critical roles in converting extracellular stimuli into immune responses. However, whether MAPK/ERK signaling induces virus immunity by directly phosphorylating viral effectors remains largely unknown. Barley yellow striate mosaic virus (BYSMV) is an economically important plant cytorhabdovirus that is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a propagative manner. Here, we found that the barley (Hordeum vulgare) MAPK MPK3 (HvMPK3) and the planthopper ERK (LsERK) proteins interact with the BYSMV nucleoprotein (N) and directly phosphorylate N protein primarily on serine 290. The overexpression of HvMPK3 inhibited BYSMV infection, whereas barley plants treated with the MAPK pathway inhibitor U0126 displayed greater susceptibility to BYSMV. Moreover, knockdown of LsERK promoted virus infection in SBPHs. A phosphomimetic mutant of the N Ser290 (S290D) completely abolished virus infection because of impaired self-interaction of BYSMV N and formation of unstable N-RNA complexes. Altogether, our results demonstrate that the conserved MAPK and ERK directly phosphorylate the viral nucleoprotein to trigger immunity against cross-kingdom infection of BYSMV in host plants and its insect vectors.
Assuntos
Hemípteros , Hordeum , Rhabdoviridae , Animais , Antivirais , Hordeum/genética , Insetos Vetores , Nucleoproteínas/genética , Rhabdoviridae/fisiologiaRESUMO
Lysosome plays important roles in cellular homeostasis, and its dysregulation contributes to tumor growth and survival. However, the understanding of regulation and the underlying mechanism of lysosome in cancer survival is incomplete. Here, we reveal a role for a histone acetylation-regulated long noncoding RNA termed lysosome cell death regulator (LCDR) in lung cancer cell survival, in which its knockdown promotes apoptosis. Mechanistically, LCDR binds to heterogenous nuclear ribonucleoprotein K (hnRNP K) to regulate the stability of the lysosomal-associated protein transmembrane 5 (LAPTM5) transcript that maintains the integrity of the lysosomal membrane. Knockdown of LCDR, hnRNP K, or LAPTM5 promotes lysosomal membrane permeabilization and lysosomal cell death, thus consequently resulting in apoptosis. LAPTM5 overexpression or cathepsin B inhibitor partially restores the effects of this axis on lysosomal cell death in vitro and in vivo. Similarly, targeting LCDR significantly decreased tumor growth of patient-derived xenografts of lung adenocarcinoma (LUAD) and had significant cell death using nanoparticles (NPs)-mediated systematic short interfering RNA delivery. Moreover, LCDR/hnRNP K/LAPTM5 are up-regulated in LUAD tissues, and coexpression of this axis shows the increased diagnostic value for LUAD. Collectively, we identified a long noncoding RNA that regulates lysosome function at the posttranscriptional level. These findings shed light on LCDR/hnRNP K/LAPTM5 as potential therapeutic targets, and targeting lysosome is a promising strategy in cancer treatment.
Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/genética , Apoptose/genética , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , China , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neoplasias/genéticaRESUMO
Asymmetric enamine alkylation represents a powerful tool for stereoselective C-C bond formation; in contrast, the development of enantioselective enamine acylation remains elusive. Here, we report that a chiral phosphoric acid can render an in-situ-formed enamine to undergo a stereoselective intramolecular α-carbon acylation, providing an alternative approach for the synthesis of useful pyrrolinones and indolinones bearing tetrasubstituted stereocenters. Utilizing an effective integration of the desymmetrization strategy and bifunctional organocatalysis, the first example of enantioselective enamine acylation is achieved by employing readily available aminomalonic esters and cyclic ketones. Instead of reactive and moisture-sensitive acyl chlorides, common esters with low electrophilicity were successfully used as efficient acylating reagents via hydrogen bonding interactions. The utility is demonstrated in the concise and enantioselective synthesis of (+)-LipidGreen I and II. Experimental studies and DFT calculations establish the reaction pathway and the origin of stereocontrol.
RESUMO
The aberrant acetylation of mitochondrial proteins is involved in the pathogenesis of multiple diseases including neurodegenerative diseases and cerebral ischemic injury. Previous studies have shown that depletion of mitochondrial NAD+, which is necessary for mitochondrial deacetylase activity, leads to decreased activity of mitochondrial deacetylase and thus causes hyperacetylation of mitochondrial proteins in ischemic brain tissues, which results in altered mitochondrial dynamics. However, it remains largely unknown about how mitochondrial dynamics-related protein Drp1 is acetylated in ischemic neuronal cells and brain tissues. Here, we showed that Drp1 and GCN5L1 expression was up-regulated in OGD-treated neuronal cells and ischemic brain tissues induced by dMCAO, accompanied by the increased mitochondrial fission, mtROS accumulation, and cell apoptosis. Further, we confirmed that ischemia/hypoxia promoted Drp1 interaction with GCN5L1 in neuronal cells and brain tissues. GCN5L1 knockdown attenuated, while its overexpression enhanced Drp1 acetylation and mitochondrial fission, indicating that GCN5L1 plays a crucial role in ischemia/hypoxia-induced mitochondrial fission by acetylating Drp1. Mechanistically, ischemia/hypoxia induced Drp1 phosphorylation by CDK5 upregulation-mediated activation of AMPK in neuronal cells, which in turn facilitated the interaction of GCN5L1 with Drp1, thus enhancing Drp1 acetylation and mitochondrial fission. Accordingly, inhibition of AMPK alleviated ischemia/hypoxia- induced Drp1 acetylation and mitochondrial fission and protected brain tissues from ischemic damage. These findings provide a novel insight into the functional roles of GCN5L1 in regulating Drp1 acetylation and identify a previously unrecognized CDK5-AMPK-GCN5L1 pathway that mediates the acetylation of Drp1 in ischemic brain tissues.
Assuntos
Proteínas Quinases Ativadas por AMP , Isquemia Encefálica , Quinase 5 Dependente de Ciclina , Dinaminas , Dinâmica Mitocondrial , Dinaminas/metabolismo , Dinaminas/genética , Animais , Acetilação , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Masculino , Neurônios/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Modelos Animais de Doenças , Proteínas do Tecido NervosoRESUMO
Severe fever with thrombocytopenia syndrome (SFTS) and hemorrhagic fever with renal syndrome (HFRS) usually have different infection routes, and coinfection is relatively rare. This study examines the clinical and etiological characteristics of coinfection by these two pathogens to provide important references for clinical diagnosis and treatment. Blood samples from 22 clinically diagnosed patients with HFRS were collected for molecular detection of HFRS and common tick and mouse borne diseases. Inoculate the blood of six severe and critically patients into cells to isolate and proliferate potential viruses, and retest the cell culture to determine the pathogen. In addition, complete data were collected from these 22 HFRS and concurrent SFTS patients, and white blood cells (WBCs), platelet (PLT), blood urea nitrogen (BUN), creatinine (Cr) and other data were compared and analyzed. A total of 31 febrile patients, including 22 HFRS patients and 9 SFTS patients, were collected from September 2021 to October 2022. Among these HFRS patients, 11 were severe or critical. Severe and critical HFRS patients were characterized by rodent exposure history, pharyngeal and conjunctival hyperemia, abnormal WBC and PLT counts, and elevated BUN and Cr values. Virus isolation and molecular detection on blood samples from 6 patients showed that three of the six severe patients were positive for hantaan virus (HTNV), and two of the three HTNV positives were also positive for SFTS bunyavirus (SFTSV). The two coinfected patients exhibited different clinical and laboratory characteristics compared to those infected by either virus alone. Coinfection of HTNV and SFTSV leads to severe and complex hemorrhagic fever. Laboratory characteristics, such as the indicators of WBC, PLT, BUN, and Cr, may differ between HFRS and SFTS. These findings have implications and provide references for the diagnosis and treatment of coinfected cases.
Assuntos
Coinfecção , Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Coinfecção/virologia , Vírus Hantaan/isolamento & purificação , Vírus Hantaan/genética , Vírus Hantaan/patogenicidade , Masculino , Feminino , Pessoa de Meia-Idade , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/sangue , Adulto , Phlebovirus/genética , Phlebovirus/isolamento & purificação , Febre Hemorrágica com Síndrome Renal/virologia , Febre Hemorrágica com Síndrome Renal/sangue , Febre Hemorrágica com Síndrome Renal/diagnóstico , Febre Hemorrágica com Síndrome Renal/complicações , Idoso , Animais , Adulto JovemRESUMO
Precisely sensing the light field direction information plays the essential role in the fields of three-dimensional (3D) imaging, light field sensing, target positioning and tracking, remote sensing, etc. It is thrilling to find that the optical fiber can be used as a sensing component due to its high sensitivity, compact size, and strong resistance to electromagnetic interference. According to the core principle that the few-mode fiber output speckle pattern is sensitive to the change of incident light field direction, the variation characteristics is further investigated in this research study. Based on the simulation and analysis of the fiber transmission characteristics, the output speckle corresponding to the incident light field with the direction in the range of ±6° horizontally and vertically are calculated. Furthermore, a deep convolutional neural network (CNN): fiber speckle demodulation network (FSDNET) is proposed and constructed to establish what we believe to be a novel way to reveal and identify the mapping relationship between the light field direction and the output speckle. The theoretical simulation shows that the mean absolute error (MAE) between the perceived light field directions and the true directions is 0.01°. Then, a light field direction sensing system based on the few-mode fiber is developed. Regarding to the performance of the sensing system, the MAE of the FSDNET for the light field directions that have appeared in the training set is 0.0389°, and for testing set of the unknown directions that have not appeared in the training set, the MAE is 0.0570°. Therefore, the simulation and experimental results prove that high performance sensing of light field direction can be achieved by the proposed few-mode fiber sensing system and the FSDNET.
RESUMO
We present a differential compressive imaging method for an optical fiber bundle (OFB), which provides a solution for an ultrathin bend-resistant endoscope with high resolution. This method uses an OFB and a diffuser to generate speckle illumination patterns. Differential operation is additionally applied to the speckle patterns to produce sensing matrices, by which the correlation between the matrices is greatly reduced from 0.875 to 0.0275, which ensures the high quality of image reconstruction. Pixilation artifacts from the fiber core arrangement are also effectively eliminated with this configuration. We demonstrate high-resolution reconstruction of images of 132 × 132 pixels with a compression rate of 12% using 77 fiber cores, the total diameter of which is only about 91â µm. An experimental verification proves that this method is tolerant to a limited degree of fiber bending, which provides a potential approach for robust high-resolution fiber endoscopy.
RESUMO
Integrated power dividers (PDs) are essential in terahertz (THz) communication and radar systems, but miniaturization often leads to performance degradation due to fabrication inaccuracies and sharp bends. Topological photonics offers a solution to these issues, yet creating THz power dividers with arbitrary splitting ratios remains challenging. We present a design methodology for on-chip topological THz power dividers with customizable splitting ratios using valley-locked photonic crystals. These crystals feature a tri-layered structure with two distinct valley Chern number layers and an intermediate semimetal layer. Utilizing the Jackiw-Rebbi model, we show that the characteristic impedance of the valley-locked photonic crystals, and thus the power division ratio, can be tuned by adjusting the semimetal layer width. Our approach is validated through simulations and experiments for both equal (1:1) and unequal (4:9) power ratios. This method enables efficient navigation around sharp bends and robust THz on-chip connectivity.
RESUMO
BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a group of inflammatory diseases affecting the central nervous system, characterized by optic neuritis and myelitis. The complex nature of NMOSD and varied patient response necessitates personalized treatment and efficient patient stratification strategies. OBJECTIVE: To provide a comprehensive review of recent advances in clinical and biomarker research related to aquaporin-4 (AQP4)-immunoglobulin G (IgG)-seropositive NMOSD prognosis and identify key areas for future research. METHODS: A comprehensive review and synthesis of recent literature were conducted, focusing on demographic factors and laboratory investigations. RESULTS: Demographic factors, such as age, ethnicity, and sex, influence NMOSD prognosis. Key biomarkers for NMOSD prognosis include homocysteine, antinuclear antibodies, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, thyroid hormone levels, neurofilament light chain levels, and serum glial fibrillary acidic protein might also predict NMOSD attack prognosis. CONCLUSION: Further investigation is required to understand sex-related disparities and biomarker inconsistencies. Identification and understanding of these factors can aid in the development of personalized therapeutic strategies, thereby improving outcomes for NMOSD patients. Future studies should focus on unifying research design for consistent results.
Assuntos
Neuromielite Óptica , Humanos , Imunoglobulina G , Prognóstico , Aquaporina 4 , Biomarcadores , Autoanticorpos , DemografiaRESUMO
A copper-catalyzed [3 + 2] annulation of O-acyl oximes with 2-electron-withdrawing group substituted p-hydroquinones for the efficient synthesis of polysubstituted 5-hydroxyindoles is developed. Further intramolecular cyclization leads to the concise and rapid construction of several kinds of 3,4- and 4,5-fused polycyclic indoles.
RESUMO
Receptor-like cytoplasmic kinases (RLCKs) represent a distinct class of receptor-like kinases crucial for various aspects of plant biology, including growth, development, and stress responses. This study delves into the characterization of RLCK VII-8 members within cucurbits, particularly in melon, examining both structural features and the phylogenetic relationships of these genes/proteins. The investigation extends to their potential involvement in disease resistance by employing ectopic overexpression in Arabidopsis. The promoters of CmRLCK VII-8 genes harbor multiple phytohormone- and stress-responsive cis-acting elements, with the majority (excluding CmRLCK39) displaying upregulated expression in response to defense hormones and fungal infection. Subcellular localization studies reveal that CmRLCK VII-8 proteins predominantly reside on the plasma membrane, with CmRLCK29 and CmRLCK30 exhibiting additional nuclear distribution. Notably, Arabidopsis plants overexpressing CmRLCK30 manifest dwarfing and delayed flowering phenotypes. Overexpression of CmRLCK27, CmRLCK30, and CmRLCK34 in Arabidopsis imparts enhanced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000, concomitant with the strengthened expression of defense genes and reactive oxygen species accumulation. The CmRLCK VII-8 members actively participate in chitin- and flg22-triggered immune responses. Furthermore, CmRLCK30 interacts with CmMAPKKK1 and CmARFGAP, adding a layer of complexity to the regulatory network. In summary, this functional characterization underscores the regulatory roles of CmRLCK27, CmRLCK30, and CmRLCK34 in immune responses by influencing pathogen-induced defense gene expression and ROS accumulation.
Assuntos
Arabidopsis , Botrytis , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Botrytis/fisiologia , Botrytis/patogenicidade , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cucurbitaceae/microbiologia , Cucurbitaceae/genética , Filogenia , Plantas Geneticamente ModificadasRESUMO
Two novel MoO42--templated luminescent silver alkynyl nanoclusters with 20-nuclearity ([(MoO42-)@Ag20(C≡CtBu)8(Ph2PO2)7(tfa)2]·(tfa-) (1)) and 18-nuclearity ([(MoO42-)@Ag18(C≡CtBu)8(Ph2PO2)7]·(OH) (2)) (tfa = trifluoroacetate) were synthesized with the green light maximum emissions at 507 and 516 nm, respectively. The nanoclusters were investigated and characterized by single-crystal X-ray crystallography, electrospray ionization mass spectrum (ESI-MS), X-ray photoelectron spectroscopy, thermogravimetry (TG), photoluminescence (PL), ultraviolet-visible (UV-vis) spectroscopy, and density functional theory calculations (DFT). The two nanoclusters differ in their structure by a supplementary [Ag2(tfa)2] organometallic surface motif, which significantly participates in the frontier molecular orbitals of 1, resulting in similar bonding patterns but different optical properties between the two clusters. Indeed, both nanoclusters show strong temperature-dependent photoluminescence properties, which make them potential candidates in the fields of optical devices for further applications.
RESUMO
Cucurbitacin B (CuB) is a natural triterpenoid with diverse pharmacological effects including potent anticancer activity. However, its oral bioavailability is hampered by limited metabolism in vivo. We characterized CuB's in vivo metabolism in rats to uncover bioactive metabolites retaining therapeutic potential, using a robust UHPLC-Q-TOF-MS/MS workflow. This workflow combined molecular networking, fragmentation filtering, and mass defect filtering to identify CuB metabolites in rat urine, plasma, and feces following oral administration. Thirteen metabolites were identified and seven were confirmed. Major phase I transformations involved hydrolysis, reduction, epoxidation, and amination. Phase II conjugation included cysteine, glutathione, glucuronide, and gluconic acid conjugates. Notably, one of the main metabolites formed was the cysteine conjugate CuB-Cys. CuB-Cys maintained similar in vitro antiproliferative activity to CuB on HepG2, MCF-7, and PANC-1 cancer cell lines. However, it demonstrated lower cytotoxicity towards non-cancerous L02 cells, highlighting improved therapeutic selectivity. Mechanistically, CuB-Cys induced greater apoptotic signaling in HepG2 cells than CuB via enhanced caspase activation and disrupted BAX-Bcl-2 balance. This represents the first systematic characterization of CuB's in vivo metabolic pathway. The identification and confirmation of CuB-Cys provide insight for drug development efforts aiming to maintain therapeutic efficacy while reducing toxicity, via metabolite-based approaches. Our findings shed light on strategies for improving CuB's clinical potential.
RESUMO
Polyethylene (PE), a highly prevalent non-biodegradable polymer in the field of plastics, presents a waste management issue. To alleviate this issue, bio-based PE (bio-PE), derived from renewable resources like corn and sugarcane, offers an environmentally friendly alternative. This review discusses various production methods of bio-PE, including fermentation, gasification, and catalytic conversion of biomass. Interestingly, the bio-PE production volumes and market are expanding due to the growing environmental concerns and regulatory pressures. Additionally, the production of PE and bio-PE biocomposites using agricultural waste as filler materials, highlights the growing demand for sustainable alternatives to conventional plastics. According to previous studies, addition of ≈50% defibrillated corn and abaca fibers into bio-PE matrix and a compatibilizer, results in the highest Young's modulus of 4.61 and 5.81 GPa, respectively. These biocomposites have potential applications in automotive, building construction, and furniture industries. Moreover, the advancement made in abiotic and biotic degradation of PE and PE biocomposites is elucidated to address their environmental impacts. Finally, the paper concludes with insights into the opportunities, challenges, and future perspectives in the sustainable production and utilization of PE and bio-PE biocomposites. In summary, production of PE and bio-PE biocomposites can contribute to a cleaner and sustainable future.
Assuntos
Polietileno , Polietileno/química , Biomassa , FermentaçãoRESUMO
This study investigated forkhead box O3a (FoxO3a) expression in peripheral blood of sepsis mice and its correlation with lymphocyte apoptosis. Sixty male C57 mice were randomly assigned to sham, model, and intervention groups. Sepsis was induced via cecal ligation in the model and intervention groups, while sham mice underwent similar procedures excluding cecal ligation. Apoptosis proteins in lymphocytes were assessed by Western blotting, reactive oxygen species (ROS) levels by 2,7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA), and serum interleukin-1ß (IL-1ß) and IL-10 content. The model group exhibited elevated mortality, increased lymphocyte apoptosis, higher Caspase3 expression, and lower Bcl-2/Bax ratio compared to sham and intervention groups. Additionally, the model group displayed decreased serum IL-10, elevated IL-1ß, heightened lymphocytic ROS, reduced FoxO3a expression, and increased levels of p-FoxO3a, p-PI3K, and p-Akt compared to sham. In sepsis mice, inhibited FoxO3a signaling in lymphocytes leads to enhanced apoptosis, elevated ROS, and immune cell dysfunction, contributing to increased mortality.
Assuntos
Apoptose , Proteína Forkhead Box O3 , Linfócitos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Sepse , Animais , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Sepse/metabolismo , Sepse/patologia , Sepse/sangue , Masculino , Linfócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/sangue , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Interleucina-10/metabolismo , Interleucina-10/sangue , Modelos Animais de Doenças , Caspase 3/metabolismoRESUMO
Key features of Alzheimer's disease include neuronal loss, accumulation of beta-amyloid plaques, and formation of neurofibrillary tangles. These changes are due in part to abnormal protein metabolism, particularly the accumulation of amyloid beta. Mitochondria are the energy production centers within cells and are also the main source of oxidative stress. In AD, mitochondrial function is impaired, leading to increased oxidative stress and the production of more reactive oxidative substances, further damaging cells. Mitophagy is an important mechanism for maintaining mitochondrial health, helping to clear damaged mitochondria, prevent the spread of oxidative stress, and reduce abnormal protein aggregation. To this end, this article conducts an integrated analysis based on DNA methylation and transcriptome data of AD. After taking the intersection of the genes where the differential methylation sites are located and the differential genes, machine learning methods were used to build an AD diagnostic model. This article screened five diagnostic genes ATG12, CSNK2A2, CSNK2B, MFN1 and PGAM5 and conducted experimental verification. The diagnostic genes discovered and the diagnostic model constructed in this article can provide reference for the development of clinical diagnostic models for AD.
Assuntos
Doença de Alzheimer , Autofagia , Metilação de DNA , Mitocôndrias , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Autofagia/genética , Metilação de DNA/genética , Biomarcadores/metabolismo , Mitofagia/genética , Transcriptoma/genética , Aprendizado de Máquina , MultiômicaRESUMO
Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.
Assuntos
Fibrose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Camundongos , Masculino , Proteínas de Sinalização YAP/metabolismo , Fibroblastos/metabolismo , Citidina/análogos & derivados , Citidina/farmacologia , Camundongos Knockout , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Acetiltransferase N-Terminal E/metabolismo , Via de Sinalização Hippo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células Cultivadas , Transdução de Sinais , Acetiltransferases N-Terminal/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
Cardiac cachexia, the terminal stage of chronic heart failure, is characterized by severe systemic metabolic imbalances and significant weight loss, primarily resulting from skeletal muscle mass depletion. Despite the detrimental consequences, there is no standardized and clinically-approved intervention currently available for cardiac cachexia. In the context of cardiac cachexia, accelerated protein turnover, that is, inhibited protein synthesis and enhanced protein degradation, plays a crucial role in skeletal muscle wasting. This process is primarily mediated by various proteins encoded by atrogenes. Among them, the atrogene Trim63 (tripartite motif family 63) and its encoded protein MuRF1 have been extensively studied. This review article aims to elucidate the pathogenic mechanisms underlying skeletal muscle wasting in cardiac cachexia, describe the biochemical characteristics of MuRF1, and provide an overview of the investigation into MuRF1-targeting inhibitors. The ultimate goal is to offer novel strategies for the clinical treatment for skeletal muscle wasting associated with cardiac cachexia.
Assuntos
Caquexia , Insuficiência Cardíaca , Proteínas Musculares , Músculo Esquelético , Atrofia Muscular , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/tratamento farmacológico , Humanos , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Músculo Esquelético/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , AnimaisRESUMO
BACKGROUND: Deep neuromuscular block (NMB) has been shown to improve surgical conditions and alleviate post-operative pain in bariatric surgery compared with moderate NMB. We hypothesized that deep NMB could also improve the quality of early recovery after laparoscopic sleeve gastrectomy (LSG). METHODS: Eighty patients were randomized to receive either deep (post-tetanic count 1-3) or moderate (train-of-four count 1-3) NMB. The QoR-15 questionnaire was used to evaluate the quality of early recovery at 1 day before surgery (T0), 24 and 48 h after surgery (T2, T3). Additionally, we recorded diaphragm excursion (DE), postoperative pain, surgical condition, cumulative dose of analgesics, time of first flatus and ambulation, post-operative nausea and vomiting, time of tracheal tube removal and hospitalization time. MAIN RESULTS: The quality of recovery was significantly better 24 h after surgery in patients who received a deep versus moderate block (114.4 ± 12.9 versus 102.1 ± 18.1). Diaphragm excursion was significantly greater in the deep NMB group when patients performed maximal inspiration at T2 and T3 (P < 0.05). Patients who underwent deep NMB reported lower visceral pain scores 40 min after surgery; additionally, these patients experienced lower pain during movement at T3 (P < 0.05). Optimal surgical conditions were rated in 87.5% and 64.6% of all measurements during deep and moderate NMB respectively (P < 0.001). The time to tracheal tube removal was significantly longer in the deep NMB group (P = 0.001). There were no differences in other outcomes. CONCLUSION: In obese patients receiving deep NMB during LSG, we observed improved QoR-15 scores, greater diaphragmatic excursions, improved surgical conditions, and visceral pain scores were lower. More evidence is needed to determine the effects of deep NMB on these outcomes. TRIAL REGISTRATION: ChiCTR2200065919. Date of retrospectively registered: 18/11/2022.
Assuntos
Laparoscopia , Bloqueio Neuromuscular , Doenças Neuromusculares , Dor Visceral , Humanos , Obesidade , Dor Pós-Operatória/tratamento farmacológico , GastrectomiaRESUMO
The efficacy of growth factor gene-modified stem cells in treating spinal cord injury (SCI) remains unclear. This study aims to evaluate the effectiveness of growth factor gene-modified stem cells in restoring motor function after SCI. Two reviewers searched four databases, including PubMed, Embase, Web of Science, and Scopus, to identify relevant records. Studies on rodents assessing the efficacy of transplanting growth factor gene-modified stem cells in restoring motor function after SCI were included. The results were reported using the standardized mean difference (SMD) with a 95% confidence interval (95% CI). Analyses showed that growth factor gene-modified stem cell transplantation improved motor function recovery in rodents with SCI compared to the untreated (SMD = 3.98, 95% CI 3.26-4.70, I2 = 86.8%, P < 0.0001) and stem cell (SMD = 2.53, 95% CI 1.93-3.13, I2 = 86.9%, P < 0.0001) groups. Using growth factor gene-modified neural stem/histone cells enhanced treatment efficacy. In addition, the effectiveness increased when viral vectors were employed for gene modification and high transplantation doses were administered during the subacute phase. Stem cells derived from the human umbilical cord exhibited an advantage in motor function recovery. However, the transplantation of growth factor gene-modified stem cells did not significantly improve motor function in male rodents (P = 0.136). Transplantation of growth factor gene-modified stem cells improved motor function in rodents after SCI, but claims of enhanced efficacy should be approached with caution. The safety of gene modification remains a significant concern, requiring additional efforts to enhance its clinical translatability.