Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 116(4): 1152-1171, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37285370

RESUMO

Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.


Assuntos
Cicer , Lens (Planta) , Lupinus , Phaseolus , Humanos , Lipidômica , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Alérgenos
2.
Plant J ; 116(4): 1136-1151, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37150955

RESUMO

Tomato (Solanum lycopersicum) is a prominent fruit with rich genetic resources for crop improvement. By using a phenotype-guided screen of over 7900 tomato accessions from around the world, we identified new associations for complex traits such as fruit weight and total soluble solids (Brix). Here, we present the phenotypic data from several years of trials. To illustrate the power of this dataset we use two case studies. First, evaluation of color revealed allelic variation in phytoene synthase 1 that resulted in differently colored or even bicolored fruit. Secondly, in view of the negative relationship between fruit weight and Brix, we pre-selected a subset of the collection that includes high and low Brix values in each category of fruit size. Genome-wide association analysis allowed us to detect novel loci associated with total soluble solid content and fruit weight. In addition, we developed eight F2 biparental intraspecific populations. Furthermore, by taking a phenotype-guided approach we were able to isolate individuals with high Brix values that were not compromised in terms of yield. In addition, the demonstration of novel results despite the high number of previous genome-wide association studies of these traits in tomato suggests that adoption of a phenotype-guided pre-selection of germplasm may represent a useful strategy for finding target genes for breeding.


Assuntos
Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Frutas/genética
3.
Curr Biol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39197460

RESUMO

Capsicum (pepper) is among the most economically important species worldwide, and its fruits accumulate specialized metabolites with essential roles in plant environmental interaction and human health benefits as well as in conferring their unique taste. However, the genetics underlying differences in metabolite presence/absence and/or accumulation remain largely unknown. In this study, we carried out a genome-wide association study as well as generating and characterizing a novel backcross inbred line mapping population to determine the genetic architecture of the pepper metabolome. This genetic analysis provided over 1,000 metabolic quantitative trait loci (mQTL) for over 250 annotated metabolites. We identified 92 candidate genes involved in various mQTLs. Among the identified loci, we described and validated a gene cluster of eleven UDP-glycosyltransferases (UGTs) involved in monomeric capsianoside biosynthesis. We additionally constructed the gene-by-gene-based biosynthetic pathway of pepper capsianoside biosynthesis, including both core and decorative reactions. Given that one of these decorative pathways, namely the glycosylation of acyclic diterpenoid glycosides, contributes to plant resistance, these data provide new insights and breeding resources for pepper. They additionally provide a blueprint for the better understanding of the biosynthesis of species-specific natural compounds in general.

4.
Hortic Res ; 9: uhac129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928403

RESUMO

Although autophagy is a conserved mechanism operating across eukaryotes, its effects on crops and especially their metabolism has received relatively little attention. Indeed, whilst a few recent studies have used systems biology tools to look at the consequences of lack of autophagy in maize these focused on leaf tissues rather than the kernels. Here we utilized RNA interference (RNAi) to generate tomato plants that were deficient in the autophagy-regulating protease ATG4. Plants displayed an early senescence phenotype yet relatively mild changes in the foliar metabolome and were characterized by a reduced fruit yield phenotype. Metabolite profiling indicated that metabolites of ATG4-RNAi tomato leaves just exhibited minor alterations while that of fruit displayed bigger difference compared to the WT. In detail, many primary metabolites exhibited decreases in the ATG4-RNAi lines, such as proline, tryptophan and phenylalanine, while the representative secondary metabolites (quinic acid and 3-trans-caffeoylquinic acid) were present at substantially higher levels in ATG4-RNAi green fruits than in WT. Moreover, transcriptome analysis indicated that the most prominent differences were in the significant upregulation of organelle degradation genes involved in the proteasome or chloroplast vesiculation pathways, which was further confirmed by the reduced levels of chloroplastic proteins in the proteomics data. Furthermore, integration analysis of the metabolome, transcriptome and proteome data indicated that ATG4 significantly affected the lipid metabolism, chlorophyll binding proteins and chloroplast biosynthesis. These data collectively lead us to propose a more sophisticated model to explain the cellular co-ordination of the process of autophagy.

5.
Mol Plant ; 13(7): 1027-1046, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305499

RESUMO

While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC-MS- and LC-MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways.


Assuntos
Frutas/metabolismo , Polifenóis/metabolismo , Solanum lycopersicum/metabolismo , Cromatografia Líquida , Flavonoides/metabolismo , Frutas/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Variação Genética , Glicosiltransferases/metabolismo , Solanum lycopersicum/genética , Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica , Anotação de Sequência Molecular , Especificidade da Espécie
6.
Nat Commun ; 7: 12399, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545969

RESUMO

Incidence of natural light stress renders it important to enhance our understanding of the mechanisms by which plants protect themselves from harmful effects of UV-B irradiation, as this is critical for fitness of land plant species. Here we describe natural variation of a class of phenylacylated-flavonols (saiginols), which accumulate to high levels in floral tissues of Arabidopsis. They were identified in a subset of accessions, especially those deriving from latitudes between 16° and 43° North. Investigation of introgression line populations using metabolic and transcript profiling, combined with genomic sequence analysis, allowed the identification of flavonol-phenylacyltransferase 2 (FPT2) that is responsible for the production of saiginols and conferring greater UV light tolerance in planta. Furthermore, analysis of polymorphism within the FPT duplicated region provides an evolutionary framework of the natural history of this locus in the Brassicaceae.


Assuntos
Aciltransferases/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/fisiologia , Seleção Genética/fisiologia , Processamento Alternativo , Arabidopsis/efeitos da radiação , Flavonóis/metabolismo , Flores/metabolismo , Duplicação Gênica/fisiologia , Polimorfismo Genético , Isoformas de Proteínas/fisiologia , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA