Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(6): 100559, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105363

RESUMO

The 2nd CASMS conference was held virtually through Gather. Town platform from October 17 to 21, 2022, with a total of 363 registrants including an outstanding and diverse group of scientists at the forefront of their research fields from both academia and industry worldwide, especially in the United States and China. The conference offered a 5-day agenda with an exciting scientific program consisting of two plenary lectures, 14 parallel symposia, and 4 special sessions in which a total of 97 invited speakers presented technological innovations and their applications in proteomics & biological mass spectrometry and metabo-lipidomics & pharmaceutical mass spectrometry. In addition, 18 invited speakers/panelists presented at 3 research-focused and 2 career development workshops. Moreover, 144 posters, 54 lightning talks, 5 sponsored workshops, and 14 exhibitions were presented, from which 20 posters and 8 lightning talks received presentation awards. Furthermore, the conference featured 1 MCP lectureship and 5 young investigator awardees for the first time to highlight outstanding mid-career and early-career rising stars in mass spectrometry from our society. The conference provided a unique scientific platform for young scientists (i.e., graduate students, postdocs and junior faculty/investigators) to present their research, meet with prominent scientists, and learn about career development and job opportunities (http://casms.org).


Assuntos
Espectrometria de Massas , Sociedades Científicas , Humanos , China , Preparações Farmacêuticas , Proteômica , Estados Unidos
2.
Biomed Chromatogr ; 38(3): e5795, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071756

RESUMO

Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).


Assuntos
Espectrometria de Massas , Lipidômica , Preparações Farmacêuticas , Proteômica , Congressos como Assunto
3.
Biomed Chromatogr ; 37(7): e5583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36634055

RESUMO

Understanding the protein dynamics of a drug target is important for pharmaceutical research because it provides insight into drug design, target engagement, pharmacodynamics and drug efficacy. Nonradioactive isotope labeling has been the method of choice for protein turnover measurement thanks to the advancement of high-resolution mass spectrometry. While the changes in proteome in cell cultures can be monitored precisely, as the culture media can be completely replaced with 2 H-, 15 N- or 13 C-labeled essential amino acids, quantifying rates of protein synthesis in vivo is more challenging. The amount of isotope tracer that can be administered into the body is relatively small compared with the existing protein, thus requiring more sensitive detection, and the precursor-product labeling relationship is more complicated to interpret. The purpose of this review is to provide an overview of the principles of in vivo protein turnover studies using deuterium water (2 H2 O) with an emphasis on targeted protein analysis by hybrid LC-MS assay platforms. The pursuit of these opportunities will facilitate drug discovery and research in preclinical and clinical stages.


Assuntos
Rotulagem de Produtos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Água , Proteoma/análise , Marcação por Isótopo
4.
Biomed Chromatogr ; 36(1): e5242, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34519061

RESUMO

The reported method involves a novel workflow that eliminates the need for authentic reference standards for the quantitation of drug metabolites in biological samples using a single multi-isotopically labeled compound bearing both radio and stable isotopes. The resulting radio and stable bifunctionalized isotopolog (RADSTIL) of the parent drug is employed as a substrate for in vitro biotransformation to targeted RADSTILs of metabolites as calibrants. Inclusion of a radio label enables both radiometric and mass spectrometric detection. The addition of stable labels ensures the subsequent isotopic interference-free quantitation of unlabeled metabolites in preclinical and clinical samples. This affords a more accurate quantitation workflow compared with the current semi-quantitation method, which utilizes isotopic interfering radio isotopologs of metabolites alone as calibrants. The proof-of-concept is illustrated with (14 C,13 C2 )-acetaminophen where in vitro biotransformation produced (14 C,13 C2 )-sulfate and (14 C,13 C2 )-glucuronide calibrants. Absolute quantitation of the acetaminophen metabolites was then achieved by liquid chromatography coupled with radiometry and mass spectrometry. Quantitative data obtained by this method fell within 82-86% of the values from conventional LC-MS/MS method.


Assuntos
Cromatografia Líquida/normas , Isótopos , Espectrometria de Massas em Tandem/normas , Acetaminofen/sangue , Acetaminofen/química , Animais , Biotransformação , Calibragem , Cromatografia Líquida/métodos , Haplorrinos , Humanos , Isótopos/sangue , Isótopos/química , Masculino , Nêutrons , Radiometria , Ratos , Espectrometria de Massas em Tandem/métodos
5.
Biomed Chromatogr ; 34(1): e4633, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31257628

RESUMO

Bioanalysis assays that reliably quantify biotherapeutics and biomarkers in biological samples play pivotal roles in drug discovery and development. Liquid chromatography coupled with mass spectrometry (LC-MS), owing to its superior specificity, faster method development and multiplex capability, has evolved as one of the most important platforms for bioanalysis of biotherapeutics, particularly new scaffolds such as half-life extension platforms for proteins and peptides, as well as antibody drug conjugates. Intact LC-MS analysis is orthogonal to bottom-up surrogate peptide approach by providing whole molecule quantitation and high-level sequence and structure information. Here we review the latest development in LC-MS bioanalysis of intact proteins and peptides by summarizing recent publications and discussing the important topics such as the comparison between top-down intact analysis and bottom-up surrogate peptide approach, as well as simultaneous quantitation and catabolite identification. Key bioanalytical issues around intact protein bioanalysis such as sensitivity, data processing strategies, specificity, sample preparation and LC condition are elaborated. For peptides, topics including quantitation of intact peptide vs. digested surrogate peptide, metabolites, sensitivity, LC condition, assay performance, internal standard and sample preparation are discussed.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteínas/análise , Animais , Biomarcadores/análise , Humanos , Camundongos
6.
Anal Chem ; 90(8): 5314-5321, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29589741

RESUMO

Bioanalysis of antibody-drug conjugates (ADCs) is challenging due to the complex, heterogeneous nature of their structures and their complicated catabolism. To fully describe the pharmacokinetics (PK) of an ADC, several analytes are commonly quantified, including total antibody, conjugate, and payload. Among them, conjugate is the most challenging to measure, because it requires detection of both small and large molecules as one entity. Existing approaches to quantify the conjugated species of ADCs involve a ligand binding assay (LBA) for conjugated antibody or hybrid LBA/liquid chromatography/tandem mass spectrometry (LC/MS/MS) for quantitation of conjugated drug. In our current work for a protein-drug conjugate (PDC) using the Centyrin scaffold, a similar concept to ADCs but with smaller protein size, an alternative method to quantify the conjugate by using a surrogate peptide approach, was utilized. The His-tagged proteins were isolated from biological samples using immobilized metal affinity chromatography (IMAC), followed by trypsin digestion. The tryptic peptide containing the linker attached to the payload was used as a surrogate of the conjugate and monitored by LC/MS/MS analysis. During method development and its application, we found that hydrolysis of the succinimide ring of the linker was ubiquitous, taking place at many stages during the lifetime of the PDC including in the initial drug product, in vivo in circulation in the animals, and ex vivo during the trypsin digestion step of the sample preparation. We have shown that hydrolysis during trypsin digestion is concentration-independent and consistent during the work flow-therefore, having no impact on assay performance. However, for samples that have undergone extensive hydrolysis prior to trypsin digestion, significant bias could be introduced if only the non-hydrolyzed form is considered in the quantitation. Therefore, it is important to incorporate succinimide hydrolysis products in the quantitation method in order to provide an accurate estimation of the total conjugate level. More importantly, the LC/MS/MS-based method described here provides a useful tool to quantitatively evaluate succinimide hydrolysis of ADCs in vivo, which has been previously reported to have significant impact on their stability, exposure, and efficacy.


Assuntos
Imunoconjugados/análise , Succinimidas/química , Animais , Cromatografia Líquida , Hidrólise , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Espectrometria de Massas em Tandem
7.
Anal Chem ; 89(16): 8399-8404, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28696683

RESUMO

The following work describes a combined enzymatic and bioanalytical method that permits absolute quantitation of metabolites in biological samples without the requirement for reference metabolite standards. This technique was exemplified using a radio (14C) isotopologue and a stable (13C6) isotopologue of acetaminophen as substrates for in vitro biosynthesis of the corresponding radio and stable isotope labeled metabolites, namely, 14C- and 13C6-glucuronides and sulfates. By supplanting the use of authentic metabolite standards, traditionally used to calibrate 13C6-metabolites via liquid chromatography-tandem mass spectrometry (LC-MS/MS), 13C6-metabolites were radiocalibrated by their 14C-isotopologues via liquid chromatography coupled with radioactivity detection and mass spectrometry (LC-RAD/MS). The radiocalibrated 13C6-isotopologues were in turn used to quantitate acetaminophen and its corresponding metabolites in rat plasma samples by LC-MS/MS. Variation between this and a conventional LC-MS/MS method using authentic standards for calibration was within ±17%, permitting its use in preclinical and clinical applications. Since authentic metabolite standards are not required under the concept of radio and stable isotopologues using adapted LC-RAD/MS protocols, significantly fewer resources are required to support accurate metabolite quantitation which in turn enables efficient analysis of simple and complex metabolite profiles.


Assuntos
Acetaminofen/sangue , Analgésicos não Narcóticos/sangue , Glucuronídeos/química , Marcação por Isótopo , Sulfatos/química , Acetaminofen/administração & dosagem , Acetaminofen/metabolismo , Administração Oral , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/metabolismo , Animais , Isótopos de Carbono , Radioisótopos de Carbono , Cromatografia Líquida , Glucuronídeos/metabolismo , Masculino , Espectrometria de Massas , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Sulfatos/metabolismo
8.
Anal Chem ; 89(11): 6065-6075, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28457123

RESUMO

As therapeutic recombinant fusion proteins become more widely applicable for the treatment of various types of diseases, there is an increased demand for universal methods such as liquid chromatography (LC)-mass spectrometry (MS) for the determination of their pharmacokinetic properties, particularly their catabolism. The most common approach of analyzing proteins by LC-MS is to digest them into peptides, which can serve as surrogates of the protein. Alternatively, we have developed a novel high-resolution mass spectrometry (HRMS) based approach for analyzing large-molecule proteins at the intact level in biological samples without digestion. We established an immunoaffinity capture LC-HRMS method to quantify the intact parent molecule while simultaneously identifying catabolites for recombinant fusion proteins. We describe this method using dulaglutide, a glucagon-like peptide 1 (GLP1)-Fc fusion protein. Two proteolytic sites within the GLP1 peptide sequence of dulaglutide were identified using this novel LC-HRMS analysis in vivo in mice. These proteolytic sites were identified with the intact molecule being quantified simultaneously. Together with the trypsin digestion based LC-MS/MS analysis using surrogate peptides from different domains of the analyte, an insightful understanding of the pharmacokinetics and in vivo biotransformation of dulaglutide was obtained. Thus, this method enables simultaneous acquisition of both intact drug concentration and important catabolite information for this recombinant fusion protein, providing valuable insight into the integrity of the molecule and its catabolism in vivo. This is critical for designing and screening novel protein therapeutics and for understanding their pharmacokinetics and pharmacodynamics. With continuing advancement of LC-HRMS and software, this method can be very beneficial in drug discovery and development.


Assuntos
Descoberta de Drogas/métodos , Espectrometria de Massas/métodos , Proteínas/análise , Animais , Biotransformação , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Peptídeos Semelhantes ao Glucagon/farmacocinética , Fragmentos Fc das Imunoglobulinas , Camundongos , Proteínas/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/farmacocinética
9.
Biomed Chromatogr ; 28(6): 794-801, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24861746

RESUMO

4ß-Hydroxycholesterol (4ß-HC) has been proposed as a new endogenous biomarker for cytochrome P450 3A4/5 activity. Therefore, it is important to have a robust method for its accurate determination in human plasma. Here a liquid chromatography-tandem mass spectrometry with electrospray ionization (LC/ESI-MS/MS) assay for the quantitation of 4ß-HC in human plasma is described. While the calibration standards were prepared in a surrogate matrix for human plasma, the quality control samples were prepared in human plasma to mimic the incurred study samples. In order to achieve accurate determination of 4ß-HC, the chromatographic separation of 4ß-HC from its isomers, especially 4α-hydroxycholesterol (4α-HC), was crucial. In the absence of an authentic 4α-HC standard at the time of this study, an alternative selectivity test strategy was developed to confirm the separation. After being alkalized with potassium hydroxide, the human plasma sample (50 µL) was extracted with hexane, derivatized into picolinyl esters using picolinic acid, extracted again with hexane, and then analyzed by LC/ESI-MS/MS. The calibration curve range was 5-500 ng/mL and the chromatographic separation was achieved on a 50 × 2.1 mm Thermal Hypersil Gold column with a gradient elution. The assay accuracy, precision, linearity, selectivity and analyte stability throughout the analysis were established. The validated assay was successfully applied to a Phase I clinical study for the measurement of 4ß-HC in human plasma.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Citocromo P-450 CYP3A/metabolismo , Hidroxicolesteróis/sangue , Espectrometria de Massas em Tandem/métodos , Biomarcadores/sangue , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos
10.
J Mass Spectrom ; 59(5): e5023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38624283

RESUMO

Microsampling has revolutionized pharmaceutical drug development and clinical research by reducing sample volume requirements, allowing sample collection at home or nontraditional sites, minimizing animal and patient burden, and enabling more flexible study designs. This perspective paper discusses the transformative impact of microsampling and patient-centric sampling (PCS) techniques, emphasizing their advantages in drug development and clinical trials. We highlight the integration of liquid chromatography-mass spectrometry (LC-MS) strategies for analyzing PCS samples, focusing on our research experience and a review of current literatures. The paper reviews commercially available PCS devices, their regulatory status, and their application in clinical trials, underscoring the benefits of PCS in expanding patient enrollment diversity and improving study designs. We also address the operational challenges of implementing PCS, including the need for bridging studies to ensure data comparability between traditional and microsampling methods, and the analytical challenges posed by PCS samples. The paper proposes future directions for PCS, including the development of global regulatory standards, technological advancements to enhance user experience, the increased concern of sustainability and patient data privacy, and the integration of PCS with other technologies for improved performance in drug development and clinical studies. By advancing microsampling and PCS techniques, we aim to foster patient-centric approaches in pharmaceutical sciences, ultimately enhancing patient care and treatment efficacy.


Assuntos
Desenvolvimento de Medicamentos , Espectrometria de Massa com Cromatografia Líquida , Animais , Humanos , Projetos de Pesquisa , Assistência Centrada no Paciente , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA