Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Genet ; 18(9): e1010386, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36166469

RESUMO

Adenosine bases of RNA can be transiently modified by the deposition of a methyl-group to form N6-methyladenosine (m6A). This adenosine-methylation is an ancient process and the enzymes involved are evolutionary highly conserved. A genetic screen designed to identify suppressors of late flowering transgenic Arabidopsis plants overexpressing the miP1a microProtein yielded a new allele of the FIONA1 (FIO1) m6A-methyltransferase. To characterize the early flowering phenotype of fio1 mutant plants we employed an integrative approach of mRNA-seq, Nanopore direct RNA-sequencing and meRIP-seq to identify differentially expressed transcripts as well as differentially methylated RNAs. We provide evidence that FIO1 is the elusive methyltransferase responsible for the 3'-end methylation of the FLOWERING LOCUS C (FLC) transcript. Furthermore, our genetic and biochemical data suggest that 3'-methylation stabilizes FLC mRNAs and non-methylated FLC is a target for rapid degradation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regiões 3' não Traduzidas/genética , Adenosina/genética , Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Metilação , Metiltransferases/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Genes Dev ; 31(22): 2282-2295, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29269486

RESUMO

Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor-heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes-is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Meristema/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Secas , Farnesiltranstransferase/genética , Proteínas de Choque Térmico HSP90/genética , Meristema/anatomia & histologia , MicroRNAs/metabolismo , Mutação , Prenilação , Transdução de Sinais , Fatores de Transcrição/metabolismo
3.
Development ; 147(10)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32345745

RESUMO

Class III homeodomain leucine zipper (HD-ZIPIII) transcription factors play fundamental roles in controlling plant development. The known HD-ZIPIII target genes encode proteins involved in the production and dissipation of the auxin signal, HD-ZIPII transcription factors and components that feedback to regulate HD-ZIPIII expression or protein activity. Here, we have investigated the regulatory hierarchies of the control of MORE AXILLARY BRANCHES2 (MAX2) by the HD-ZIPIII protein REVOLUTA (REV). We found that REV can interact with the promoter of MAX2 In agreement, rev10D gain-of-function mutants had increased levels of MAX2 expression, while rev loss-of-function mutants showed lower levels of MAX2 in some tissues. Like REV, MAX2 plays known roles in the control of plant architecture, photobiology and senescence, which prompted us to initiate a multi-level analysis of growth phenotypes of hd-zipIII, max2 and respective higher order mutants thereof. Our data suggest a complex relationship of synergistic and antagonistic activities between REV and MAX2; these interactions appear to depend on the developmental context and do not all involve the direct regulation of MAX2 by REV.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Transporte/metabolismo , Proteínas de Homeodomínio/metabolismo , Transdução de Sinais/genética , Proteínas de Arabidopsis/química , Senescência Celular/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/química , Zíper de Leucina , Mutação com Perda de Função , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo
4.
PLoS Genet ; 16(3): e1008678, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203519

RESUMO

Plants have evolved strategies to avoid shade and optimize the capture of sunlight. While some species are tolerant to shade, plants such as Arabidopsis thaliana are shade-intolerant and induce elongation of their hypocotyl to outcompete neighboring plants. We report the identification of a developmental module acting downstream of shade perception controlling vascular patterning. We show that Arabidopsis plants react to shade by increasing the number and types of water-conducting tracheary elements in the vascular cylinder to maintain vascular density constant. Mutations in genes affecting vascular patterning impair the production of additional xylem and also show defects in the shade-induced hypocotyl elongation response. Comparative analysis of the shade-induced transcriptomes revealed differences between wild type and vascular patterning mutants and it appears that the latter mutants fail to induce sets of genes encoding biosynthetic and cell wall modifying enzymes. Our results thus set the stage for a deeper understanding of how growth and patterning are coordinated in a dynamic environment.


Assuntos
Padronização Corporal/fisiologia , Hipocótilo/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipocótilo/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(42): 26197-26205, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33033229

RESUMO

MicroProteins are small, often single-domain proteins that are sequence-related to larger, often multidomain proteins. Here, we used a combination of comparative genomics and heterologous synthetic misexpression to isolate functional cereal microProtein regulators. Our approach identified LITTLE NINJA (LNJ), a microProtein that acts as a modulator of jasmonic acid (JA) signaling. Ectopic expression of LNJ in Arabidopsis resulted in stunted plants that resembled the decuple JAZ (jazD) mutant. In fact, comparing the transcriptomes of transgenic LNJ overexpressor plants and jazD revealed a large overlap of deregulated genes, suggesting that ectopic LNJ expression altered JA signaling. Transgenic Brachypodium plants with elevated LNJ expression levels showed deregulation of JA signaling as well and displayed reduced growth and enhanced production of side shoots (tiller). This tillering effect was transferable between grass species, and overexpression of LNJ in barley and rice caused similar traits. We used a clustered regularly interspaced short palindromic repeats (CRISPR) approach and created a LNJ-like protein in Arabidopsis by deleting parts of the coding sentence of the AFP2 gene that encodes a NINJA-domain protein. These afp2-crispr mutants were also stunted in size and resembled jazD Thus, similar genome-engineering approaches can be exploited as a future tool to create LNJ proteins and produce cereals with altered architectures.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Hordeum/metabolismo , Oryza/metabolismo , Oxilipinas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Perfilação da Expressão Gênica , Hordeum/efeitos dos fármacos , Hordeum/genética , Oryza/efeitos dos fármacos , Oryza/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Isoformas de Proteínas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
6.
Biochem Soc Trans ; 50(2): 773-782, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35311888

RESUMO

Plants can detect the presence of light using specialised photoreceptor proteins. These photoreceptors measure the intensity of light, but they can also respond to different spectra of light and thus 'see' different colours. Cryptochromes, which are also present in animals, are flavin-based photoreceptors that enable plants to detect blue and ultraviolet-A (UV-A) light. In Arabidopsis, there are two cryptochromes, CRYPTOCHROME 1 (CRY1) and CRYPTOCHROME 2 (CRY2) with known sensory roles. They function in various processes such as blue-light mediated inhibition of hypocotyl elongation, photoperiodic promotion of floral initiation, cotyledon expansion, anthocyanin production, and magnetoreception, to name a few. In the dark, the cryptochromes are in an inactive monomeric state and undergo photochemical and conformational change in response to illumination. This results in flavin reduction, oligomerisation, and the formation of the 'cryptochrome complexome'. Mechanisms of cryptochrome activation and signalling have been extensively studied and found to be conserved across phylogenetic lines. In this review, we will therefore focus on a far lesser-known mechanism of regulation that is unique to plant cryptochromes. This involves inhibition of cryptochrome activity by small proteins that prevent its dimerisation in response to light. The resulting inhibition of function cause profound alterations in economically important traits such as plant growth, flowering, and fruit production. This review will describe the known mechanisms of cryptochrome activation and signalling in the context of their modulation by these endogenous and artificial small inhibitor proteins. Promising new applications for biotechnological and agricultural applications will be discussed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Criptocromos/genética , Flavinas , Filogenia
7.
Plant Physiol ; 187(1): 187-202, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34015131

RESUMO

MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Histona Desmetilases com o Domínio Jumonji/genética , Meristema/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Meristema/genética
8.
J Integr Plant Biol ; 64(2): 205-214, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34761872

RESUMO

Breeding plants with polyploid genomes is challenging because functional redundancy hampers the identification of loss-of-function mutants. Medicago sativa is tetraploid and obligate outcrossing, which together with inbreeding depression complicates traditional breeding approaches in obtaining plants with a stable growth habit. Inducing dominant mutations would provide an alternative strategy to introduce domestication traits in plants with high gene redundancy. Here we describe two complementary strategies to induce dominant mutations in the M. sativa genome and how they can be relevant in the control of flowering time. First, we outline a genome-engineering strategy that harnesses the use of microProteins as developmental regulators. MicroProteins are small proteins that appeared during genome evolution from genes encoding larger proteins. Genome-engineering allows us to retrace evolution and create microProtein-coding genes de novo. Second, we provide an inventory of genes regulated by microRNAs that control plant development. Making respective gene transcripts microRNA-resistant by inducing point mutations can uncouple microRNA regulation. Finally, we investigated the recently published genomes of M. sativa and provide an inventory of breeding targets, some of which, when mutated, are likely to result in dominant traits.


Assuntos
Medicago sativa , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas/genética , Medicago sativa/genética , Fenótipo , Poliploidia , Tetraploidia
9.
Development ; 145(24)2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30446629

RESUMO

Branching is a common feature of plant development. In seed plants, axillary meristems (AMs) initiate in leaf axils to enable lateral shoot branching. AM initiation requires a high level of expression of the meristem marker SHOOT MERISTEMLESS (STM) in the leaf axil. Here, we show that modules of interacting transcriptional regulators control STM expression and AM initiation. Two redundant AP2-type transcription factors, DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE (DRNL), control AM initiation by regulating STM expression. DRN and DRNL directly upregulate STM expression in leaf axil meristematic cells, as does another transcription factor, REVOLUTA (REV). The activation of STM expression by DRN/DRNL depends on REV, and vice versa. DRN/DRNL and REV have overlapping expression patterns and protein interactions in the leaf axil, which are required for the upregulation of STM expression. Furthermore, LITTLE ZIPPER3, another REV-interacting protein, is expressed in the leaf axil and interferes with the DRN/DRNL-REV interaction to negatively modulate STM expression. Our results support a model in which interacting transcriptional regulators fine-tune the expression of STM to precisely regulate AM initiation. Thus, shoot branching recruits the same conserved protein complexes used in embryogenesis and leaf polarity patterning.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/ultraestrutura , Modelos Biológicos , Mutação/genética , Folhas de Planta/ultraestrutura , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Tempo
10.
Plant Physiol ; 179(4): 1876-1892, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30723178

RESUMO

The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) represents a major hub in the light-signaling cascade both under visible and UV-B light. The mode of transcriptional regulation of HY5, especially under UV-B light, is not well characterized. B-BOX (BBX) transcription factors regulate HY5 transcription and also posttranscriptionally modulate HY5 to control photomorphogenesis under white light. Here, we identify BBX31 as a key signaling intermediate in visible and UV-B light signal transduction in Arabidopsis (Arabidopsis thaliana). BBX31 expression is induced by UV-B radiation in a fluence-dependent manner. HY5 directly binds to the promoter of BBX31 and regulates its transcript levels. Loss- and gain-of-function mutants of BBX31 indicate that it acts as a negative regulator of photomorphogenesis under white light but is a positive regulator of UV-B signaling. Genetic interaction studies suggest that BBX31 regulates photomorphogenesis independent of HY5 We found no evidence for a direct BBX31-HY5 interaction, and they primarily regulate different sets of genes in white light. Under high doses of UV-B radiation, BBX31 promotes the accumulation of UV-protective flavonoids and phenolic compounds. It enhances tolerance to UV-B radiation by regulating genes involved in photoprotection and DNA repair in a HY5-dependent manner. Under UV-B radiation, overexpression of BBX31 enhances HY5 transcriptional levels in a UV RESISTANCE LOCUS8-dependent manner, suggesting that BBX31 might regulate HY5 transcription.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Transdução de Sinal Luminoso , Fatores de Transcrição/fisiologia , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reparo do DNA/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Integr Plant Biol ; 62(6): 730-736, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31478602

RESUMO

Photoperiod-dependent flowering in rice is regulated by HEADING DATE 1 (Hd1), which acts as both an activator and repressor of flowering in a daylength-dependent manner. To investigate the use of microProteins as a tool to modify rice sensitivity to the photoperiod, we designed a synthetic Hd1 microProtein (Hd1miP) capable of interacting with Hd1 protein, and overexpressed it in rice. Transgenic OX-Hd1miP plants flowered significantly earlier than wild type plants when grown in non-inductive long day conditions. Our results show the potential of microProteins to serve as powerful tools for modulating crop traits and unraveling protein function.


Assuntos
Flores/fisiologia , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Oryza/genética , Plantas Geneticamente Modificadas
12.
Plant Physiol ; 176(4): 3136-3145, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29382693

RESUMO

MicroProteins are small, single-domain proteins that regulate multidomain proteins by sequestering them into novel, often nonproductive, complexes. Several microProteins have been identified in plants and animals, most of which negatively regulate transcription factors. MicroProtein candidates that potentially target a wide range of different protein classes were recently identified in a computational approach. Here, we classified all Arabidopsis (Arabidopsis thaliana) microProteins and developed a synthetic microProtein approach to target specific protein classes, such as hydrolases, receptors, and lyases, in a proof-of-concept approach. Our findings reveal that microProteins can be used to influence different physiological processes, which makes them useful tools for posttranslational regulation in plants and potentially also in animals.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Biologia Computacional/métodos , Peso Molecular , Mutação , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Fatores de Transcrição/metabolismo
13.
Nat Chem Biol ; 18(6): 581-582, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35393573
14.
Cell Mol Life Sci ; 75(14): 2529-2536, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29670998

RESUMO

MicroProteins are small proteins that contain a single protein domain and are related to larger, often multi-domain proteins. At the molecular level, microProteins act by interfering with the formation of higher order protein complexes. In the past years, several microProteins have been identified in plants and animals that strongly influence biological processes. Due to their ability to act as dominant regulators in a targeted manner, microProteins have a high potential for biotechnological use. In this review, we present different ways in which microProteins are generated and we elaborate on techniques used to identify and characterize them. Finally, we give an outlook on possible applications in biotechnology.


Assuntos
Processamento Alternativo , Biotecnologia/métodos , Biologia Computacional/métodos , Proteínas/genética , Animais , Humanos , Fases de Leitura Aberta/genética , Proteínas/metabolismo , Proteólise , Isoformas de RNA/genética
15.
PLoS Genet ; 12(3): e1005959, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27015278

RESUMO

MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two Arabidopsis thaliana microProteins, miP1a and miP1b, physically interact with CONSTANS (CO) a potent regulator of flowering time. The miP1a/b-type microProteins evolved in dicotyledonous plants and have an additional carboxy-terminal PF(V/L)FL motif. This motif enables miP1a/b microProteins to interact with TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins. Interaction of CO with miP1a/b/TPL causes late flowering due to a failure in the induction of FLOWERING LOCUS T (FT) expression under inductive long day conditions. Both miP1a and miP1b are expressed in vascular tissue, where CO and FT are active. Genetically, miP1a/b act upstream of CO thus our findings unravel a novel layer of flowering time regulation via microProtein-inhibition.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/biossíntese , Flores/genética , Fatores de Transcrição/biossíntese , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Ligação Proteica , Estrutura Terciária de Proteína/genética , Fatores de Transcrição/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(42): 11973-11978, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27698117

RESUMO

A defining feature of plant leaves is their flattened shape. This shape depends on an antagonism between the genes that specify adaxial (top) and abaxial (bottom) tissue identity; however, the molecular nature of this antagonism remains poorly understood. Class III homeodomain leucine zipper (HD-ZIP) transcription factors are key mediators in the regulation of adaxial-abaxial patterning. Their expression is restricted adaxially during early development by the abaxially expressed microRNA (MIR)165/166, yet the mechanism that restricts MIR165/166 expression to abaxial leaf tissues remains unknown. Here, we show that class III and class II HD-ZIP proteins act together to repress MIR165/166 via a conserved cis-element in their promoters. Organ morphology and tissue patterning in plants, therefore, depend on a bidirectional repressive circuit involving a set of miRNAs and its targets.


Assuntos
Proteínas de Homeodomínio/genética , Zíper de Leucina/genética , MicroRNAs/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biomarcadores , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Modelos Biológicos , Ligação Proteica , Característica Quantitativa Herdável , Elementos de Resposta
17.
Development ; 141(24): 4772-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25395454

RESUMO

As sessile organisms, plants have to continuously adjust growth and development to ever-changing environmental conditions. At the end of the growing season, annual plants induce leaf senescence to reallocate nutrients and energy-rich substances from the leaves to the maturing seeds. Thus, leaf senescence is a means with which to increase reproductive success and is therefore tightly coupled to the developmental age of the plant. However, senescence can also be induced in response to sub-optimal growth conditions as an exit strategy, which is accompanied by severely reduced yield. Here, we show that class III homeodomain leucine zipper (HD-ZIPIII) transcription factors, which are known to be involved in basic pattern formation, have an additional role in controlling the onset of leaf senescence in Arabidopsis. Several potential direct downstream genes of the HD-ZIPIII protein REVOLUTA (REV) have known roles in environment-controlled physiological processes. We report that REV acts as a redox-sensitive transcription factor, and directly and positively regulates the expression of WRKY53, a master regulator of age-induced leaf senescence. HD-ZIPIII proteins are required for the full induction of WRKY53 in response to oxidative stress, and mutations in HD-ZIPIII genes strongly delay the onset of senescence. Thus, a crosstalk between early and late stages of leaf development appears to contribute to reproductive success.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Homeodomínio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Oxirredutases do Álcool , Imunoprecipitação da Cromatina , Cisteína Endopeptidases , Peróxido de Hidrogênio/metabolismo , Zíper de Leucina/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
18.
Plant Physiol ; 169(2): 1240-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246448

RESUMO

An intricate network of antagonistically acting transcription factors mediates the formation of a flat leaf lamina of Arabidopsis (Arabidopsis thaliana) plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription factor family specify the adaxial domain (future upper side) of the leaf, while antagonistically acting KANADI transcription factors determine the abaxial domain (future lower side). Here, we used a messenger RNA sequencing approach to identify genes regulated by KANADI1 (KAN1) and subsequently performed a meta-analysis combining our data sets with published genome-wide data sets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes. When exposed to shade, we found three YUCCA genes, YUC2, YUC5, and YUC8, to be transcriptionally up-regulated, which correlates with an increase in the levels of free auxin. When ectopically expressed, KAN1 is able to transcriptionally repress these three YUC genes and thereby block shade-induced auxin biosynthesis. Consequently, KAN1 is able to strongly suppress shade-avoidance responses. Taken together, we hypothesize that HD-ZIPIII/KAN form the basis of a basic growth-promoting module. Hypocotyl extension in the shade and outgrowth of new leaves both involve auxin synthesis and signaling, which are under the direct control of HD-ZIPIII/KAN.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/genética , DNA de Plantas/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas , Sequências Reguladoras de Ácido Nucleico , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 109(51): 21152-7, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213257

RESUMO

Spatiotemporal control of the formation of organ primordia and organ boundaries from the stem cell niche in the shoot apical meristem (SAM) determines the patterning and architecture of plants, but the underlying signaling mechanisms remain poorly understood. Here we show that brassinosteroids (BRs) play a key role in organ boundary formation by repressing organ boundary identity genes. BR-hypersensitive mutants display organ-fusion phenotypes, whereas BR-insensitive mutants show enhanced organ boundaries. The BR-activated transcription factor BZR1 directly represses the cup-shaped cotyledon (CUC) family of organ boundary identity genes. In WT plants, BZR1 accumulates at high levels in the nuclei of central meristem and organ primordia but at a low level in organ boundary cells to allow CUC gene expression. Activation of BR signaling represses CUC gene expression and causes organ fusion phenotypes. This study uncovers a role for BR in the spatiotemporal control of organ boundary formation and morphogenesis in the SAM.


Assuntos
Arabidopsis/genética , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Genes de Plantas , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Mutação , Fenótipo , Brotos de Planta/metabolismo , Transdução de Sinais
20.
J Integr Plant Biol ; 56(6): 518-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24528801

RESUMO

The Arabidopsis (Arabidopsis thaliana L.) genome encodes for four distinct classes of homeodomain leucine-zipper (HD-ZIP) transcription factors (HD-ZIPI to HD-ZIPIV), which are all organized in multi-gene families. HD-ZIP transcription factors act as sequence-specific DNA-binding proteins that are able to control the expression level of target genes. While HD-ZIPI and HD-ZIPII proteins are mainly associated with environmental responses, HD-ZIPIII and HD-ZIPIV are primarily known to act as patterning factors. Recent studies have challenged this view. It appears that several of the different HD-ZIP families interact genetically to align both morphogenesis and environmental responses, most likely by modulating phytohormone-signaling networks.


Assuntos
Meio Ambiente , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina , Desenvolvimento Vegetal , Transdução de Sinal Luminoso , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA