Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 43(11): 2644-2647, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856383

RESUMO

Energy transfer from a quantized field to a quantized dipole is investigated. We find that a single photon can transfer energy to a two-level dipole by inducing a dynamic Stark shift, going beyond the well-known absorption and emission processes. A quantum thermodynamical perspective allows us to unravel these two energy transfer mechanisms and to identify the former as a generalized work and the latter as a generalized heat. We show two necessary conditions for the generalized work transfer by a single photon to occur, namely, off-resonance and finite linewidth of the pulse. We also show that the generalized work performed by a single-photon pulse equals the reactive (dispersive) contribution of the work performed by a semiclassical pulse in the low-excitation regime.

2.
Opt Lett ; 42(9): 1692-1695, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454137

RESUMO

The dynamic Stark shift results from the interaction of an atom with the electromagnetic field. We show how a propagating single-photon wave packet can induce a time-dependent dynamical Stark shift on a two-level system (TLS). A non-perturbative fully quantum treatment is employed, where the quantum dynamics of both the field and the TLS are analyzed. We also provide the means to experimentally access such time-dependent frequency by measuring the interference pattern in the electromagnetic field inside a 1D waveguide. The effect we evidence here may find applications in the autonomous quantum control of quantum systems without classical external fields, which can be useful for quantum information processing as well as for quantum thermodynamical tasks.

3.
Opt Lett ; 41(13): 3126-9, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367118

RESUMO

The concept of non-Markovianity (NM) in quantum dynamics is still an open debate. Understanding how to generate and measure NM in specific models may aid in this quest. In quantum optics, an engineered electromagnetic environment coupled to a single atom can induce NM. The most common scenario of structured electromagnetic environment is an optical cavity, composed by a pair of mirrors. Here, we show how to generate and measure NM on a two-level system coupled to a one-dimensional waveguide with no mirrors required. The origin of the non-Markovian behavior lies in the initial state of the field, prepared as a single-photon packet. NM is shown to depend on two experimentally controllable parameters, namely, the linewidth of the packet and its central frequency. We relate the presence of NM to quantum interference. We also show how the two output channels of the waveguide provide distinct signatures of NM, both experimentally accessible.

4.
Phys Rev Lett ; 107(15): 153601, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107291

RESUMO

We investigate the quantum-to-classical crossover of a dissipative cavity field by measuring the correlations between two noninteracting atoms coupled to the cavity mode. First, we note that there is a time window in which the mode shows a classical behavior, which depends on the cavity decay rate, the atom-field coupling strength, and the number of atoms. Then, considering the steady state of two atoms inside the cavity, we note that the entanglement between the atoms disappears while the mean number of photons of the cavity field (n) rises. However, the quantum discord reaches an asymptotic nonzero value even in the limit of n→∞, whether n is increased coherently or incoherently. Therefore, the cavity mode always preserves some quantum characteristics in the macroscopic limit, which is revealed by the quantum discord.

5.
Phys Rev Lett ; 105(9): 095702, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20868176

RESUMO

We compute the quantum correlation [quantum discord (QD)] and the entanglement (EOF) between nearest-neighbor qubits (spin-1/2) in an infinite chain described by the Heisenberg model (XXZ Hamiltonian) at finite temperatures. The chain is in the thermodynamic limit and thermalized with a reservoir at temperature T (canonical ensemble). We show that QD, in contrast to EOF and other thermodynamic quantities, spotlight the critical points associated with quantum phase transitions (QPT) for this model even at finite T. This remarkable property of QD may have important implications for experimental characterization of QPTs when one is unable to reach temperatures below which a QPT can be seen.

6.
Phys Rev E ; 102(2-1): 022114, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942439

RESUMO

Frustration can contribute to very slow relaxation times in large open chains, as in spin glasses and in biopolymers. However, frustration may not be sufficient to produce broken ergodicity in finite systems. Here we employ a system-plus-reservoir approach to investigate how strongly inhomogeneous environments and frustration compete in the relaxation of finite open chains. We find a sufficient condition for our inhomogeneous environments to break ergodicity. We use the microscopic model to derive a Markovian quantum master equation for a generic chain with ultrastrong intrachain couplings. We show that this microscopic model avoids a spurious broken ergodicity we find in the phenomenological model. We work out an explicit example of broken ergodicity due to the inhomogeneous environment of an unfrustrated spin chain as far as simulating a recent experiment on protein denaturation (where environment inhomogeneity is especially relevant). We finally show that an inhomogeneous environment can mitigate the effects of frustration-induced degeneracies.

7.
Artigo em Inglês | MEDLINE | ID: mdl-25679606

RESUMO

A pure-dephasing reservoir acting on an individual quantum system induces loss of coherence without energy exchange. When acting on composite quantum systems, dephasing reservoirs can lead to a radically different behavior. Transport of heat between two pure-dephasing Markovian reservoirs is predicted in this work. They are connected through a chain of coupled sites. The baths are kept in thermal equilibrium at distinct temperatures. Quantum coherence between sites is generated in the steady-state regime and results in the underlying mechanism sustaining the effect. A quantum model for the reservoirs is a necessary condition for the existence of stationary heat transport. A microscopic derivation of the non-unitary system-bath interaction is employed, valid for arbitrary inter-site coupling regime. The model assumes that each site-reservoir coupling is local.

8.
Artigo em Inglês | MEDLINE | ID: mdl-25019727

RESUMO

We study the effect of ultrastrong coupling on the transport of heat. In particular, we present a condition for optimal rectification, i.e., flow of heat in one direction and complete isolation in the opposite direction. We show that the strong-coupling formalism is necessary for correctly describing heat flow in a wide range of parameters, including moderate to low couplings. We present a situation in which the strong-coupling formalism predicts optimal rectification whereas the phenomenological approach predicts no heat flow in any direction, for the same parameter values.


Assuntos
Temperatura Alta , Modelos Teóricos , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA