RESUMO
Cholangiocarcinomas are usually fatal neoplasms originating from bile duct epithelia. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy, including cholangiocarcinoma. However, many cholangiocarcinoma cells are resistant to TRAIL-mediated apoptosis. Thus, our aim was to examine the intracellular mechanisms responsible for TRAIL resistance in human cholangiocarcinoma cell lines. Three TRAIL-resistant human cholangiocarcinoma cell lines were identified. All of the cell lines expressed TRAIL receptor 1/death receptor 4 (TRAIL-R1/DR4) and TRAIL-R2/DR5. Expression of TRAIL decoy receptors and the antiapoptotic cellular FLICE-inhibitory protein (cFLIP) was inconsistent across the cell lines. Of the antiapoptotic Bcl-2 family of proteins profiled (Bcl-2, Bcl-x(L), and Mcl-1), Mcl-1 was uniquely overexpressed by the cell lines. When small-interfering-RNA (siRNA) technology was used to knock down expression of Bcl-2, Bcl-x(L), and Mcl-1, only the Mcl-1-siRNA sensitized the cells to TRAIL-mediated apoptosis. In a cell line stably transfected with Mcl-1-small-hairpin-RNA (Mcl-1-shRNA), Mcl-1 depletion sensitized cells to TRAIL-mediated apoptosis despite Bcl-2 expression. TRAIL-mediated apoptosis in the stably transfected cells was associated with mitochondrial depolarization, Bax activation, cytochrome c release from mitochondria, and caspase activation. Finally, flavopiridol, an anticancer drug that rapidly down-regulates Mcl-1, also sensitized cells to TRAIL cytotoxicity. In conclusion, these studies not only demonstrate that Mcl-1 mediates TRAIL resistance in cholangiocarcinoma cells by blocking the mitochondrial pathway of cell death but also identify two strategies for circumventing this resistance.
Assuntos
Antineoplásicos/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Proteínas de Transporte/biossíntese , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Flavonoides/farmacologia , Genes bcl-2/genética , Humanos , Glicoproteínas de Membrana/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/genética , Receptores do Fator de Necrose Tumoral/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF , Fator de Necrose Tumoral alfa/farmacologia , Proteína bcl-XRESUMO
TNF-alpha cytotoxic signaling involves lysosomal permeabilization with release of the lysosomal protease cathepsin B (ctsb) into the cytosol. However, the mechanisms mediating lysosomal breakdown remain unclear. Because caspase-8 and factor associated with neutral sphingomyelinase activation (FAN) have been implicated as proximal mediators of TNF-alpha-associated apoptosis, their role in lysosomal permeabilization was examined. Cellular distribution of ctsb-green fluorescent protein (ctsb-GFP) in a rat hepatoma cell line was imaged by confocal microscopy. ctsb-GFP fluorescence was punctate under basal conditions but became diffuse after treatment with TNF-alpha/actinomycin D. This cellular redistribution of ctsb-GFP was blocked by transfection with a vector expressing a dominant-negative Fas-associated protein with death domain (DeltaFADD), cytokine response modifier A, or a pharmacological caspase-8 inhibitor, IETD-fmk. Consistent with the concept that caspase 8-mediated apoptosis is also Bid-dependent in hepatocytes, ctsb-GFP release from lysosomes was reduced in hepatocytes from Bid(-/-) mice. Interestingly, transfection with a vector expressing a dominant-negative FAN (DeltaFAN) also blocked ctsb-GFP release and caspase-8 activation. Paradigms that inhibited ctsb-GFP release from lysosomes also reduced apoptosis as assessed by morphology and biochemical criteria. In conclusion, these studies suggest FAN is upstream of caspase-8/Bid in a signaling cascade culminating in lysosomal permeabilization.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/fisiologia , Caspases/fisiologia , Lisossomos/metabolismo , Proteínas/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/genética , Caspase 8 , Caspases/metabolismo , Catepsina B/metabolismo , Células Cultivadas , Dactinomicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteína de Domínio de Morte Associada a Fas , Proteínas de Fluorescência Verde , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/genética , Camundongos , Camundongos Knockout , Permeabilidade/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/farmacologia , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Hepatocyte apoptosis by death receptors, hepatic inflammation, and fibrosis are prominent features of liver diseases. However, the link between these processes remains unclear. Our aim was to ascertain whether engulfment of apoptotic bodies by Kupffer cells promotes hepatic inflammation and fibrosis. Isolated murine Kupffer cells efficiently engulfed apoptotic bodies generated from UV-treated mouse hepatocytes. Engulfment of the apoptotic bodies, but not latex beads, stimulated Kupffer cell generation of death ligands, including Fas ligand, and tumor necrosis factor alpha (TNF-alpha). Both apoptotic body phagocytosis and death ligand generation were attenuated by gadolinium chloride, a Kupffer cell toxicant. Kupffer cells isolated from 3-day bile duct-ligated (BDL) mice were phenotypically similar to apoptotic body-"fed" Kupffer cells with enhanced death ligand expression; inhibition of hepatocyte apoptosis with a caspase inhibitor prevented this Kupffer cell activation. Consistent with a role for Kupffer cells in liver inflammation and fibrosis, gadolinium chloride attenuated neutrophil infiltration and markers for stellate cell activation. In conclusion, these findings support a model of cholestatic liver injury where Kupffer cell engulfment of apoptotic bodies promotes inflammation and fibrogenesis.