Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(8): 100809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936775

RESUMO

Microglia are resident immune cells of the brain and regulate its inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease-associated microglia (DAM). DAM express higher levels of proinflammatory signaling molecules, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to identify the potential proteins interacting with Kv1.3 during transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia following TLR4-mediated activation. Electrophysiology, Western blotting, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during a TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C terminus. We determined that the N terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (e.g., NUDC, TIMM50). Whereas, the C terminus interacts with immune signaling proteins in a lipopolysaccharide-induced inflammatory response (e.g., STAT1, TLR2, and C3). There are 70 proteins that rely on the C-terminal PDZ-binding domain to interact with Kv1.3 (e.g., ND3, Snx3, and Sun1). Furthermore, we used Kv1.3 blockade to verify functional coupling between Kv1.3 and interferon-mediated STAT1 activation. Overall, we highlight that the Kv1.3 potassium channel functions beyond conducting the outward flux of potassium ions in an inflammatory context and that Kv1.3 modulates the activity of key immune signaling proteins, such as STAT1 and C3.


Assuntos
Canal de Potássio Kv1.3 , Microglia , Proteômica , Fator de Transcrição STAT1 , Receptor 4 Toll-Like , Canal de Potássio Kv1.3/metabolismo , Microglia/metabolismo , Animais , Proteômica/métodos , Camundongos , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição STAT1/metabolismo , Linhagem Celular , Receptor 2 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Ligação Proteica
2.
Hum Mol Genet ; 33(1): 12-32, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37712894

RESUMO

Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.


Assuntos
Proteoma , Síndrome de Rett , Animais , Feminino , Humanos , Masculino , Camundongos , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteoma/genética , Proteoma/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
3.
J Neurosci ; 41(31): 6596-6616, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34261699

RESUMO

Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.


Assuntos
Deficiências do Desenvolvimento , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Transportadores de Ânions Orgânicos/genética , Proteostase/genética , Ribonucleoproteínas/genética , Proteínas Ribossômicas/genética , Animais , Linhagem Celular , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/fisiopatologia , Drosophila , Regulação da Expressão Gênica/genética , Humanos , Neurogênese/fisiologia , Biossíntese de Proteínas/genética , Ratos , Ratos Sprague-Dawley , Ribossomos/fisiologia
4.
J Neurosci ; 41(2): 215-233, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33208468

RESUMO

Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.


Assuntos
Cobre/fisiologia , Complexo de Golgi/fisiologia , Homeostase/fisiologia , Biogênese de Organelas , Sinapses/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Cobre/toxicidade , ATPases Transportadoras de Cobre/genética , Drosophila , Estimulação Elétrica , Espaço Extracelular/metabolismo , Feminino , Humanos , Masculino , RNA Interferente Pequeno , Sinapses/ultraestrutura
5.
J Neurosci ; 39(18): 3561-3581, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833507

RESUMO

Neurodevelopmental disorders offer insight into synaptic mechanisms. To unbiasedly uncover these mechanisms, we studied the 22q11.2 syndrome, a recurrent copy number variant, which is the highest schizophrenia genetic risk factor. We quantified the proteomes of 22q11.2 mutant human fibroblasts from both sexes and mouse brains carrying a 22q11.2-like defect, Df(16)A+/- Molecular ontologies defined mitochondrial compartments and pathways as some of top ranked categories. In particular, we identified perturbations in the SLC25A1-SLC25A4 mitochondrial transporter interactome as associated with the 22q11.2 genetic defect. Expression of SLC25A1-SLC25A4 interactome components was affected in neuronal cells from schizophrenia patients. Furthermore, hemideficiency of the Drosophila SLC25A1 or SLC25A4 orthologues, dSLC25A1-sea and dSLC25A4-sesB, affected synapse morphology, neurotransmission, plasticity, and sleep patterns. Our findings indicate that synapses are sensitive to partial loss of function of mitochondrial solute transporters. We propose that mitoproteomes regulate synapse development and function in normal and pathological conditions in a cell-specific manner.SIGNIFICANCE STATEMENT We address the central question of how to comprehensively define molecular mechanisms of the most prevalent and penetrant microdeletion associated with neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. This complex mutation reduces gene dosage of ∼63 genes in humans. We describe a disruption of the mitoproteome in 22q11.2 patients and brains of a 22q11.2 mouse model. In particular, we identify a network of inner mitochondrial membrane transporters as a hub required for synapse function. Our findings suggest that mitochondrial composition and function modulate the risk of neurodevelopmental disorders, such as schizophrenia.


Assuntos
Síndrome da Deleção 22q11/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Translocador 1 do Nucleotídeo Adenina/metabolismo , Animais , Comportamento Animal , Linhagem Celular , Deleção Cromossômica , Cromossomos Humanos Par 22/metabolismo , Drosophila , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteoma , Esquizofrenia/metabolismo
6.
Nucleic Acids Res ; 46(9): 4515-4532, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29522130

RESUMO

Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer.


Assuntos
Transformação Celular Neoplásica , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Instabilidade Genômica , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Dano ao DNA , Replicação do DNA , Desoxirribonuclease (Dímero de Pirimidina)/genética , Células Epiteliais/enzimologia , Humanos , Neoplasias Pulmonares/enzimologia , Mutação , Mucosa Respiratória/citologia , Mucosa Respiratória/enzimologia
7.
Hum Mol Genet ; 24(19): 5512-23, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26199316

RESUMO

Environmental factors and susceptible genomes interact to determine the risk of neurodevelopmental disorders. Although few genes and environmental factors have been linked, the intervening cellular and molecular mechanisms connecting a disorder susceptibility gene with environmental factors remain mostly unexplored. Here we focus on the schizophrenia susceptibility gene DTNBP1 and its product dysbindin, a subunit of the BLOC-1 complex, and describe a neuronal pathway modulating copper metabolism via ATP7A. Mutations in ATP7A result in Menkes disease, a disorder of copper metabolism. Dysbindin/BLOC-1 and ATP7A genetically and biochemically interact. Furthermore, disruption of this pathway causes alteration in the transcriptional profile of copper-regulatory and dependent factors in the hippocampus of dysbindin/BLOC-1-null mice. Dysbindin/BLOC-1 loss-of-function alleles do not affect cell and tissue copper content, yet they alter the susceptibility to toxic copper challenges in both mammalian cells and Drosophila. Our results demonstrate that perturbations downstream of the schizophrenia susceptibility gene DTNBP1 confer susceptibility to copper, a metal that in excess is a neurotoxin and whose depletion constitutes a micronutrient deficiency.


Assuntos
Cobre/metabolismo , Proteínas de Drosophila/genética , Proteínas Associadas à Distrofina/genética , Esquizofrenia/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , ATPases Transportadoras de Cobre , Modelos Animais de Doenças , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Disbindina , Proteínas Associadas à Distrofina/metabolismo , Predisposição Genética para Doença , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo
8.
Carcinogenesis ; 36(11): 1397-406, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26354779

RESUMO

Human papillomavirus (HPV) is the causative agent of a subgroup of head and neck cancer characterized by an intrinsic radiosensitivity. HPV initiates cellular transformation through the activity of E6 and E7 proteins. E6 and E7 expression is necessary but not sufficient to transform the host cell, as genomic instability is required to acquire the malignant phenotype in HPV-initiated cells. This study reveals a key role played by oxidative stress in promoting genomic instability and radiosensitivity in HPV-positive head and neck cancer. By employing an isogenic human cell model, we observed that expression of E6 and E7 is sufficient to induce reactive oxygen species (ROS) generation in head and neck cancer cells. E6/E7-induced oxidative stress is mediated by nicotinamide adenine dinucleotide phosphate oxidases (NOXs) and causes DNA damage and chromosomal aberrations. This mechanism for genomic instability distinguishes HPV-positive from HPV-negative tumors, as we observed NOX-induced oxidative stress in HPV-positive but not HPV-negative head and neck cancer cells. We identified NOX2 as the source of HPV-induced oxidative stress as NOX2 silencing significantly reduced ROS generation, DNA damage and chromosomal aberrations in HPV-positive cells. Due to their state of chronic oxidative stress, HPV-positive cells are more susceptible to DNA damage induced by ROS and ionizing radiation (IR). Furthermore, exposure to IR results in the formation of complex lesions in HPV-positive cells as indicated by the higher amount of chromosomal breakage observed in this group of cells. These results reveal a novel mechanism for sustaining genomic instability in HPV-positive head and neck tumors and elucidate its contribution to their intrinsic radiosensitivity.


Assuntos
Dano ao DNA , Neoplasias de Cabeça e Pescoço/virologia , Glicoproteínas de Membrana/fisiologia , NADPH Oxidases/fisiologia , Proteínas Oncogênicas Virais/fisiologia , Estresse Oxidativo , Proteínas E7 de Papillomavirus/fisiologia , Proteínas Repressoras/fisiologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Instabilidade Genômica , Neoplasias de Cabeça e Pescoço/genética , Humanos , NADPH Oxidase 2 , Espécies Reativas de Oxigênio/metabolismo
9.
Hum Mol Genet ; 22(25): 5215-28, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918659

RESUMO

Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.


Assuntos
Artrogripose/genética , Proteínas de Transporte/genética , Colestase/genética , Endossomos/genética , Insuficiência Renal/genética , Proteínas de Transporte Vesicular/genética , Animais , Artrogripose/patologia , Proteínas de Transporte/metabolismo , Colestase/patologia , Endossomos/patologia , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana , Camundongos , Mutação , Proteínas Nucleares/genética , Transporte Proteico/genética , Insuficiência Renal/patologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/metabolismo
10.
bioRxiv ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39314281

RESUMO

Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain and throughout the body, causing seizures and neurodegeneration in infancy. The mechanistic underpinnings of such neuropathology remains unclear. Here, we characterized the molecular mechanisms by which neuronal cells respond to copper depletion in multiple genetic model systems. Targeted deletion of CTR1 in neuroblastoma clonal cell lines produced copper deficiency that was associated with compromised copper-dependent Golgi and mitochondrial enzymes and a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis revealed simultaneous upregulation of mTORC1 and S6K signaling, along with reduced PERK signaling in CTR1 KO cells. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a pro-survival mechanism, ultimately resulting in increased protein synthesis as measured by puromycin labeling. These effects of copper depletion were corroborated by spatial transcriptomic profiling of the cerebellum of Atp7a flx/Y :: Vil1 Cre/+ mice, in which copper-deficient Purkinje cells exhibited upregulated protein synthesis machinery and expression of mTORC1-S6K pathway genes. We tested whether increased activity of mTOR in copper-deficient neurons was adaptive or deleterious by genetic epistasis experiments in Drosophila. Copper deficiency dendritic phenotypes in class IV neurons are partially rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper depletion.

11.
J Neurosci ; 32(11): 3697-711, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423091

RESUMO

The Biogenesis of Lysosome-Related Organelles Complex 1 (BLOC-1) is a protein complex containing the schizophrenia susceptibility factor dysbindin, which is encoded by the gene DTNBP1. However, mechanisms engaged by dysbindin defining schizophrenia susceptibility pathways have not been quantitatively elucidated. Here, we discovered prevalent and novel cellular roles of the BLOC-1 complex in neuronal cells by performing large-scale Stable Isotopic Labeling of Cells in Culture (SILAC) quantitative proteomics combined with genetic analyses in dysbindin-null mice (Mus musculus) and the genome of schizophrenia patients. We identified 24 proteins that associate with the BLOC-1 complex, many of which were altered in content/distribution in cells or tissues deficient in BLOC-1. New findings include BLOC-1 interactions with the COG complex, a Golgi apparatus tether, and antioxidant enzymes peroxiredoxins 1-2. Importantly, loci encoding eight of the 24 proteins are affected by genomic copy number variation in schizophrenia patients. Thus, our quantitative proteomic studies expand the functional repertoire of the BLOC-1 complex and provide insight into putative molecular pathways of schizophrenia susceptibility.


Assuntos
Proteínas de Transporte/genética , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Proteínas do Tecido Nervoso/genética , Proteômica/métodos , Esquizofrenia/genética , Animais , Proteínas de Transporte/fisiologia , Linhagem Celular Tumoral , Disbindina , Proteínas Associadas à Distrofina , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/fisiologia , Esquizofrenia/metabolismo , Esquizofrenia/patologia
12.
Cureus ; 15(9): e45316, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37846245

RESUMO

The posterior compartment of the leg typically contains three muscles in the superficial flexor group: the gastrocnemius, plantaris, and soleus. The gastrocnemius has medial and lateral heads (MH and LH) that originate from the medial and lateral condyles of the femur, respectively. However, a third head (TH) of the gastrocnemius, is a rare accessory muscle bundle of the gastrocnemius muscle that covers the surface of the popliteal fossa. Bilateral THs of gastrocnemius were identified in a 67-year-old male during a routine educational cadaveric dissection. Both gastrocnemius TH muscles consisted of a superficial belly with distinct neurovasculature heads and originated from the lateral condyle of the femur and inserted into the Achilles tendon. To our knowledge, the co-existence of bilateral gastrocnemius TH muscles has only been reported once. The male donor was found to exhibit an anatomical anomaly and could be clinically underdiagnosed due to its clinically silent nature and the lack of reports. Insight into the potential implications of bilateral and unilateral gastrocnemius TH and identification during clinical evaluation offers a path for future research to better identify and manage cases of gastrocnemius TH and its effects.

13.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37066332

RESUMO

Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.

14.
Sci Adv ; 9(33): eadh0558, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585521

RESUMO

The 1.6-megabase deletion at chromosome 3q29 (3q29Del) is the strongest identified genetic risk factor for schizophrenia, but the effects of this variant on neurodevelopment are not well understood. We interrogated the developing neural transcriptome in two experimental model systems with complementary advantages: isogenic human cortical organoids and isocortex from the 3q29Del mouse model. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 and 12 months, as well as perinatal mouse isocortex, all at single-cell resolution. Systematic pathway analysis implicated dysregulation of mitochondrial function and energy metabolism. These molecular signatures were supported by analysis of oxidative phosphorylation protein complex expression in mouse brain and assays of mitochondrial function in engineered cell lines, which revealed a lack of metabolic flexibility and a contribution of the 3q29 gene PAK2. Together, these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species.


Assuntos
Deficiência Intelectual , Neocórtex , Esquizofrenia , Criança , Humanos , Animais , Camundongos , Idoso , Esquizofrenia/genética , Deleção Cromossômica , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética
15.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747819

RESUMO

Recent advances in the genetics of schizophrenia (SCZ) have identified rare variants that confer high disease risk, including a 1.6 Mb deletion at chromosome 3q29 with a staggeringly large effect size (O.R. > 40). Understanding the impact of the 3q29 deletion (3q29Del) on the developing CNS may therefore lead to insights about the pathobiology of schizophrenia. To gain clues about the molecular and cellular perturbations caused by the 3q29 deletion, we interrogated transcriptomic effects in two experimental model systems with complementary advantages: isogenic human forebrain cortical organoids and isocortex from the 3q29Del mouse model. We first created isogenic lines by engineering the full 3q29Del into an induced pluripotent stem cell line from a neurotypical individual. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 months and 12 months, as well as day p7 perinatal mouse isocortex, all at single cell resolution. Differential expression analysis by genotype in each cell-type cluster revealed that more than half of the differentially expressed genes identified in mouse cortex were also differentially expressed in human cortical organoids, and strong correlations were observed in mouse-human differential gene expression across most major cell-types. We systematically filtered differentially expressed genes to identify changes occurring in both model systems. Pathway analysis on this filtered gene set implicated dysregulation of mitochondrial function and energy metabolism, although the direction of the effect was dependent on developmental timepoint. Transcriptomic changes were validated at the protein level by analysis of oxidative phosphorylation protein complexes in mouse brain tissue. Assays of mitochondrial function in human heterologous cells further confirmed robust mitochondrial dysregulation in 3q29Del cells, and these effects are partially recapitulated by ablation of the 3q29Del gene PAK2 . Taken together these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species. These results converge with data from other rare SCZ-associated variants as well as idiopathic schizophrenia, suggesting that mitochondrial dysfunction may be a significant but overlooked contributing factor to the development of psychotic disorders. This cross-species scRNA-seq analysis of the SCZ-associated 3q29 deletion reveals that this copy number variant may produce early and persistent changes in cellular metabolism that are relevant to human neurodevelopment.

16.
Elife ; 122023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171075

RESUMO

Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer's disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.


Assuntos
Apolipoproteína E4 , Mitocôndrias , Animais , Humanos , Camundongos , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Genótipo , Mitocôndrias/metabolismo , Mitocôndrias/patologia
17.
Carcinogenesis ; 33(9): 1769-81, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22678119

RESUMO

Endothelial tubular morphogenesis relies on an exquisite interplay of microtubule dynamics and actin remodeling to propel directed cell migration. Recently, the dynamicity and integrity of microtubules have been implicated in the trafficking and efficient translation of the mRNA for HIF-1α (hypoxia-inducible factor), the master regulator of tumor angiogenesis. Thus, microtubule-disrupting agents that perturb the HIF-1α axis and neovascularization cascade are attractive anticancer drug candidates. Here we show that EM011 (9-bromonoscapine), a microtubule-modulating agent, inhibits a spectrum of angiogenic events by interfering with endothelial cell invasion, migration and proliferation. Employing green-fluorescent transgenic zebrafish, we found that EM011 not only inhibited vasculogenesis but also disrupted preexisting vasculature. Mechanistically, EM011 caused proteasome-dependent, VHL-independent HIF-1α degradation and repressed expression of HIF-1α downstream targets, namely VEGF and survivin. Furthermore, EM011 inhibited membrane ruffling and impeded formation of filopodia, lamellipodia and stress fibers, which are critical for cell migration. These events were associated with a drug-mediated decrease in activation of Rho GTPases- RhoA, Cdc42 and Rac1, and correlated with a loss in the geometric precision of centrosome reorientation in the direction of movement. This is the first report to describe a previously unrecognized, antiangiogenic property of a noscapinoid, EM011, and provides evidence for novel anticancer strategies recruited by microtubule-modulating drugs.


Assuntos
Inibidores da Angiogênese/farmacologia , Dioxóis/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Isoquinolinas/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Centrossomo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Humanos , Masculino , Camundongos , Microtúbulos/efeitos dos fármacos , Paxilina/fisiologia , Ativação Transcricional , Proteínas rho de Ligação ao GTP/metabolismo
18.
STAR Protoc ; 3(2): 101334, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496782

RESUMO

This protocol describes how inductively coupled plasma mass spectrometry (ICP-MS) can quantify metals, sulfur, and phosphorus present in biological specimens. The high sensitivity of ICP-MS enables detection of these elements at very low concentrations, and absolute quantification is achieved with standard curves. Sulfur or phosphorus standardization reduces variability that arises because of slight differences in sample composition. This protocol bypasses challenges because of limited sample amounts and facilitates studies examining the biological roles of metals in health and disease. For complete details on the use and execution of this protocol, please refer to Hartwig et al. (2020).


Assuntos
Fósforo , Enxofre , Espectrometria de Massas/métodos , Metais/análise , Fósforo/análise , Análise Espectral , Enxofre/análise
19.
Am J Obstet Gynecol ; 204(5): 411.e1-411.e11, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21316642

RESUMO

OBJECTIVE: We sought to characterize serum angiogenic factor profile of women with complete placenta previa and determine if invasive trophoblast differentiation characteristic of accreta, increta, or percreta shares features of epithelial-to-mesenchymal transition. STUDY DESIGN: We analyzed gestational age-matched serum samples from 90 pregnant women with either complete placenta previa (n = 45) or uncomplicated pregnancies (n = 45). Vascular endothelial growth factor (VEGF), placental growth factor, and soluble form of fms-like-tyrosine-kinase-1 were immunoassayed. VEGF and phosphotyrosine immunoreactivity was surveyed in histological specimens relative to expression of vimentin and cytokeratin-7. RESULTS: Women with previa and invasive placentation (accreta, n = 5; increta, n = 6; percreta, n = 2) had lower systemic VEGF (invasive previa: median 0.8 [0.02-3.4] vs control 6.5 [2.7-10.5] pg/mL, P = .02). VEGF and phosphotyrosine immunostaining predominated in the invasive extravillous trophoblasts that coexpressed vimentin and cytokeratin-7, an epithelial-to-mesenchymal transition feature and tumorlike cell phenotype. CONCLUSION: Lower systemic free VEGF and a switch of the interstitial extravillous trophoblasts to a metastable cell phenotype characterize placenta previa with excessive myometrial invasion.


Assuntos
Placenta Acreta/metabolismo , Placenta Prévia/metabolismo , Trofoblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Estudos de Casos e Controles , Transição Epitelial-Mesenquimal , Feminino , Humanos , Queratina-7/metabolismo , Fosfotirosina/metabolismo , Placenta Acreta/patologia , Fator de Crescimento Placentário , Placenta Prévia/patologia , Gravidez , Proteínas da Gravidez/sangue , Trofoblastos/patologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Vimentina/metabolismo
20.
Exp Cell Res ; 316(12): 1946-57, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20382142

RESUMO

Mechanisms for receptor-mediated anthrax toxin internalization and delivery to the cytosol are well understood. However, far less is known about the fate followed by anthrax toxin receptors prior and after cell exposure to the toxin. We report that Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8 (TEM8) localized at steady state in Rab11a-positive and transferrin receptor-containing recycling endosomes. TEM8 followed a slow constitutive recycling route of approximately 30min as determined by pulsed surface biotinylation and chase experiments. A Rab11a dominant negative mutant and Myosin Vb tail expression impaired TEM8 recycling by sequestering TEM8 in intracellular compartments. Sequestration of TEM8 in intracellular compartments with monensin coincided with increased TEM8 association with a multi-protein complex isolated with antibodies against transferrin receptor. Addition of the cell-binding component of anthrax toxin, Protective Antigen, reduced TEM8 half-life from 7 to 3 hours, without preventing receptor recycling. Pharmacological and molecular perturbation of recycling endosome function using monensin, dominant negative Rab11a, or myosin Vb tail, reduced PA binding efficiency and TEM8-dependent cell spreading on PA-coated surfaces without affecting toxin delivery to the cytosol. These results indicate that the intracellular fate of TEM8 differentially affect its cell adhesion and cell intoxication functions.


Assuntos
Endossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Células Cultivadas , Imunofluorescência , Humanos , Proteínas dos Microfilamentos , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA