Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Cancer ; 137(6): 1318-29, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25716227

RESUMO

The ability to escape apoptosis is a hallmark of cancer-initiating cells and a key factor of resistance to oncolytic therapy. Here, we identify FAM96A as a ubiquitous, evolutionarily conserved apoptosome-activating protein and investigate its potential pro-apoptotic tumor suppressor function in gastrointestinal stromal tumors (GISTs). Interaction between FAM96A and apoptotic peptidase activating factor 1 (APAF1) was identified in yeast two-hybrid screen and further studied by deletion mutants, glutathione-S-transferase pull-down, co-immunoprecipitation and immunofluorescence. Effects of FAM96A overexpression and knock-down on apoptosis sensitivity were examined in cancer cells and zebrafish embryos. Expression of FAM96A in GISTs and histogenetically related cells including interstitial cells of Cajal (ICCs), "fibroblast-like cells" (FLCs) and ICC stem cells (ICC-SCs) was investigated by Northern blotting, reverse transcription-polymerase chain reaction, immunohistochemistry and Western immunoblotting. Tumorigenicity of GIST cells and transformed murine ICC-SCs stably transduced to re-express FAM96A was studied by xeno- and allografting into immunocompromised mice. FAM96A was found to bind APAF1 and to enhance the induction of mitochondrial apoptosis. FAM96A protein or mRNA was dramatically reduced or lost in 106 of 108 GIST samples representing three independent patient cohorts. Whereas ICCs, ICC-SCs and FLCs, the presumed normal counterparts of GIST, were found to robustly express FAM96A protein and mRNA, FAM96A expression was much reduced in tumorigenic ICC-SCs. Re-expression of FAM96A in GIST cells and transformed ICC-SCs increased apoptosis sensitivity and diminished tumorigenicity. Our data suggest FAM96A is a novel pro-apoptotic tumor suppressor that is lost during GIST tumorigenesis.


Assuntos
Apoptose/genética , Proteínas de Transporte/genética , Tumores do Estroma Gastrointestinal/genética , Proteínas Supressoras de Tumor/genética , Animais , Fator Apoptótico 1 Ativador de Proteases/genética , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Expressão Gênica/genética , Células HEK293 , Humanos , Células Intersticiais de Cajal/metabolismo , Metaloproteínas , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Mitocôndrias/genética , Peixe-Zebra/genética
2.
Hepatology ; 59(5): 1886-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24285179

RESUMO

UNLABELLED: Mouse Double Minute homolog 4 (MDM4) gene up-regulation often occurs in human hepatocellular carcinoma (HCC), but the molecular mechanisms responsible for its induction remain poorly understood. Here we investigated the role of the phosphoinositide-3-kinase/v-akt murine thymoma viral oncogene homolog/mammalian target of rapamycin (PI3K/AKT/mTOR) axis in the regulation of MDM4 levels in HCC. The activity of MDM4 and the PI3K/AKT/mTOR pathway was modulated in human HCC cell lines by way of silencing and overexpression experiments. Expression of main pathway components was analyzed in an AKT mouse model and human HCCs. MDM4 inhibition resulted in growth restraint of HCC cell lines both in vitro and in vivo. Inhibition of the PI3K-AKT and/or mTOR pathways lowered MDM4 protein levels in HCC cells and reactivated p53-dependent transcription. Deubiquitination by ubiquitin-specific protease 2a and AKT-mediated phosphorylation protected MDM4 from proteasomal degradation and increased its protein stability. The eukaryotic elongation factor 1A2 (EEF1A2) was identified as an upstream inducer of PI3K supporting MDM4 stabilization. Also, we detected MDM4 protein up-regulation in an AKT mouse model and a strong correlation between the expression of EEF1A2, activated/phosphorylated AKT, and MDM4 in human HCC (each rho > 0.8, P < 0.001). Noticeably, a strong activation of this cascade was associated with shorter patient survival. CONCLUSION: The EEF1A2/PI3K/AKT/mTOR axis promotes the protumorigenic stabilization of the MDM4 protooncogene in human HCC by way of a posttranscriptional mechanism. The activation level of the EEF1A2/PI3K/AKT/mTOR/MDM4 axis significantly influences the survival probability of HCC patients in vivo and may thus represent a promising molecular target.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/fisiologia , Fator 1 de Elongação de Peptídeos/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Idoso , Animais , Carcinoma Hepatocelular/mortalidade , Proteínas de Ciclo Celular , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia
3.
Oncogenesis ; 10(5): 42, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001852

RESUMO

The establishment of cell type specific gene expression by transcription factors and their epigenetic cofactors is central for cell fate decisions. Protein arginine methyltransferase 6 (PRMT6) is an epigenetic regulator of gene expression mainly through methylating arginines at histone H3. This way it influences cellular differentiation and proliferation. PRMT6 lacks DNA-binding capability but is recruited by transcription factors to regulate gene expression. However, currently only a limited number of transcription factors have been identified, which facilitate recruitment of PRMT6 to key cell cycle related target genes. Here, we show that LEF1 contributes to the recruitment of PRMT6 to the central cell cycle regulator CCND1 (Cyclin D1). We identified LEF1 as an interaction partner of PRMT6. Knockdown of LEF1 or PRMT6 reduces CCND1 expression. This is in line with our observation that knockdown of PRMT6 increases the number of cells in G1 phase of the cell cycle and decreases proliferation. These results improve the understanding of PRMT6 activity in cell cycle regulation. We expect that these insights will foster the rational development and usage of specific PRMT6 inhibitors for cancer therapy.

4.
Cell Rep ; 31(9): 107688, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492433

RESUMO

Leukemia stem cells (LSCs) are believed to have more distinct vulnerabilities than the bulk acute myeloid leukemia (AML) cells, but their rarity and the lack of universal markers for their prospective isolation hamper their study. We report that genetically clonal induced pluripotent stem cells (iPSCs) derived from an AML patient and characterized by exceptionally high engraftment potential give rise, upon hematopoietic differentiation, to a phenotypic hierarchy. Through fate-tracking experiments, xenotransplantation, and single-cell transcriptomics, we identify a cell fraction (iLSC) that can be isolated prospectively by means of adherent in vitro growth that resides on the apex of this hierarchy and fulfills the hallmark features of LSCs. Through integrative genomic studies of the iLSC transcriptome and chromatin landscape, we derive an LSC gene signature that predicts patient survival and uncovers a dependency of LSCs, across AML genotypes, on the RUNX1 transcription factor. These findings can empower efforts to therapeutically target AML LSCs.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/patologia , Animais , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Heterogeneidade Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Cadeias de Markov , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA-Seq , Análise de Célula Única
5.
Stem Cells Int ; 2017: 5762301, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588622

RESUMO

The transcriptional regulator far upstream binding protein 1 (FUBP1) is essential for fetal and adult hematopoietic stem cell (HSC) self-renewal, and the constitutive absence of FUBP1 activity during early development leads to embryonic lethality in homozygous mutant mice. To investigate the role of FUBP1 in murine embryonic stem cells (ESCs) and in particular during differentiation into hematopoietic lineages, we generated Fubp1 knockout (KO) ESC clones using CRISPR/Cas9 technology. Although FUBP1 is expressed in undifferentiated ESCs and during spontaneous differentiation following aggregation into embryoid bodies (EBs), absence of FUBP1 did not affect ESC maintenance. Interestingly, we observed a delayed differentiation of FUBP1-deficient ESCs into the mesoderm germ layer, as indicated by impaired expression of several mesoderm markers including Brachyury at an early time point of ESC differentiation upon aggregation to EBs. Coculture experiments with OP9 cells in the presence of erythropoietin revealed a diminished differentiation capacity of Fubp1 KO ESCs into the erythroid lineage. Our data showed that FUBP1 is important for the onset of mesoderm differentiation and maturation of hematopoietic progenitor cells into the erythroid lineage, a finding that is supported by the phenotype of FUBP1-deficient mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA