Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stroke ; 55(6): 1629-1640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639087

RESUMO

BACKGROUND: Cortical excitation/inhibition dynamics have been suggested as a key mechanism occurring after stroke. Their supportive or maladaptive role in the course of recovery is still not completely understood. Here, we used transcranial magnetic stimulation (TMS)-electroencephalography coupling to study cortical reactivity and intracortical GABAergic inhibition, as well as their relationship to residual motor function and recovery longitudinally in patients with stroke. METHODS: Electroencephalography responses evoked by TMS applied to the ipsilesional motor cortex were acquired in patients with stroke with upper limb motor deficit in the acute (1 week), early (3 weeks), and late subacute (3 months) stages. Readouts of cortical reactivity, intracortical inhibition, and complexity of the evoked dynamics were drawn from TMS-evoked potentials induced by single-pulse and paired-pulse TMS (short-interval intracortical inhibition). Residual motor function was quantified through a detailed motor evaluation. RESULTS: From 76 patients enrolled, 66 were included (68.2±13.2 years old, 18 females), with a Fugl-Meyer score of the upper extremity of 46.8±19. The comparison with TMS-evoked potentials of healthy older revealed that most affected patients exhibited larger and simpler brain reactivity patterns (Pcluster<0.05). Bayesian ANCOVA statistical evidence for a link between abnormally high motor cortical excitability and impairment level. A decrease in excitability in the following months was significantly correlated with better motor recovery in the whole cohort and the subgroup of recovering patients. Investigation of the intracortical GABAergic inhibitory system revealed the presence of beneficial disinhibition in the acute stage, followed by a normalization of inhibitory activity. This was supported by significant correlations between motor scores and the contrast of local mean field power and readouts of signal dynamics. CONCLUSIONS: The present results revealed an abnormal motor cortical reactivity in patients with stroke, which was driven by perturbations and longitudinal changes within the intracortical inhibition system. They support the view that disinhibition in the ipsilesional motor cortex during the first-week poststroke is beneficial and promotes neuronal plasticity and recovery.


Assuntos
Eletroencefalografia , Potencial Evocado Motor , Córtex Motor , Inibição Neural , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Feminino , Masculino , Estimulação Magnética Transcraniana/métodos , Idoso , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Córtex Motor/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Potencial Evocado Motor/fisiologia , Inibição Neural/fisiologia , Idoso de 80 Anos ou mais
2.
Stroke ; 54(4): 955-963, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36846963

RESUMO

BACKGROUND: Most studies on stroke have been designed to examine one deficit in isolation; yet, survivors often have multiple deficits in different domains. While the mechanisms underlying multiple-domain deficits remain poorly understood, network-theoretical methods may open new avenues of understanding. METHODS: Fifty subacute stroke patients (7±3days poststroke) underwent diffusion-weighted magnetic resonance imaging and a battery of clinical tests of motor and cognitive functions. We defined indices of impairment in strength, dexterity, and attention. We also computed imaging-based probabilistic tractography and whole-brain connectomes. To efficiently integrate inputs from different sources, brain networks rely on a rich-club of a few hub nodes. Lesions harm efficiency, particularly when they target the rich-club. Overlaying individual lesion masks onto the tractograms enabled us to split the connectomes into their affected and unaffected parts and associate them to impairment. RESULTS: We computed efficiency of the unaffected connectome and found it was more strongly correlated to impairment in strength, dexterity, and attention than efficiency of the total connectome. The magnitude of the correlation between efficiency and impairment followed the order attention>dexterity ≈ strength (strength: |r|=.03, P=0.02, dexterity: |r|=.30, P=0.05, attention: |r|=.55, P<0.001). Network weights associated with the rich-club were more strongly correlated to efficiency than non-rich-club weights. CONCLUSIONS: Attentional impairment is more sensitive to disruption of coordinated networks between brain regions than motor impairment, which is sensitive to disruption of localized networks. Providing more accurate reflections of actually functioning parts of the network enables the incorporation of information about the impact of brain lesions on connectomics contributing to a better understanding of underlying stroke mechanisms.


Assuntos
Disfunção Cognitiva , Conectoma , Acidente Vascular Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Disfunção Cognitiva/patologia , Cognição , Conectoma/métodos , Imageamento por Ressonância Magnética
3.
Cerebellum ; 22(1): 120-128, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35060078

RESUMO

Oscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.Several studies have successfully demonstrated that CB-tACS can modulate the cerebellar outflow and cerebellum-linked behavior. In the present narrative review, we summarize current studies employing the CB-tACS approach and discuss open research questions. Hereby, we aim to provide an overview on this emerging electrophysiological technique and strive to promote future research in the field. CB-tACS will contribute in the further deciphering of cerebellar oscillatory signatures and its role for motor, cognitive, or affective functions. In long term, CB-tACS could develop into a therapeutic tool for retuning disturbed oscillatory activity in cerebellar networks underlying brain disorders.


Assuntos
Encefalopatias , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Cerebelo/fisiologia , Neurônios
4.
Neuroimage ; 258: 119356, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35659995

RESUMO

Tractography enables identifying and evaluating the healthy and diseased brain's white matter pathways from diffusion-weighted magnetic resonance imaging data. As previous evaluation studies have reported significant false-positive estimation biases, recent microstructure-informed tractography algorithms have been introduced to improve the trade-off between specificity and sensitivity. However, a major limitation for characterizing the performance of these techniques is the lack of ground truth brain data. In this study, we compared the performance of two relevant microstructure-informed tractography methods, SIFT2 and COMMIT, by assessing the subject specificity and reproducibility of their derived white matter pathways. Specifically, twenty healthy young subjects were scanned at eight different time points at two different sites. Subject specificity and reproducibility were evaluated using the whole-brain connectomes and a subset of 29 white matter bundles. Our results indicate that although the raw tractograms are more vulnerable to the presence of false-positive connections, they are highly reproducible, suggesting that the estimation bias is subject-specific. This high reproducibility was preserved when microstructure-informed tractography algorithms were used to filter the raw tractograms. Moreover, the resulting track-density images depicted a more uniform coverage of streamlines throughout the white matter, suggesting that these techniques could increase the biological meaning of the estimated fascicles. Notably, we observed an increased subject specificity by employing connectivity pre-processing techniques to reduce the underlaying noise and the data dimensionality (using principal component analysis), highlighting the importance of these tools for future studies. Finally, no strong bias from the scanner site or time between measurements was found. The largest intraindividual variance originated from the sole repetition of data measurements (inter-run).


Assuntos
Conectoma , Substância Branca , Adulto , Imagem de Tensor de Difusão , Reações Falso-Positivas , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem
5.
Cerebellum ; 21(6): 1092-1122, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34813040

RESUMO

The cerebellum is involved in multiple closed-loops circuitry which connect the cerebellar modules with the motor cortex, prefrontal, temporal, and parietal cortical areas, and contribute to motor control, cognitive processes, emotional processing, and behavior. Among them, the cerebello-thalamo-cortical pathway represents the anatomical substratum of cerebellum-motor cortex inhibition (CBI). However, the cerebellum is also connected with basal ganglia by disynaptic pathways, and cerebellar involvement in disorders commonly associated with basal ganglia dysfunction (e.g., Parkinson's disease and dystonia) has been suggested. Lately, cerebellar activity has been targeted by non-invasive brain stimulation (NIBS) techniques including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to indirectly affect and tune dysfunctional circuitry in the brain. Although the results are promising, several questions remain still unsolved. Here, a panel of experts from different specialties (neurophysiology, neurology, neurosurgery, neuropsychology) reviews the current results on cerebellar NIBS with the aim to derive the future steps and directions needed. We discuss the effects of TMS in the field of cerebellar neurophysiology, the potentials of cerebellar tDCS, the role of animal models in cerebellar NIBS applications, and the possible application of cerebellar NIBS in motor learning, stroke recovery, speech and language functions, neuropsychiatric and movement disorders.


Assuntos
Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Animais , Estimulação Transcraniana por Corrente Contínua/métodos , Consenso , Cerebelo/fisiologia , Estimulação Magnética Transcraniana/métodos
6.
Brain ; 144(7): 2107-2119, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34237143

RESUMO

Stroke patients vary considerably in terms of outcomes: some patients present 'natural' recovery proportional to their initial impairment (fitters), while others do not (non-fitters). Thus, a key challenge in stroke rehabilitation is to identify individual recovery potential to make personalized decisions for neuro-rehabilitation, obviating the 'one-size-fits-all' approach. This goal requires (i) the prediction of individual courses of recovery in the acute stage; and (ii) an understanding of underlying neuronal network mechanisms. 'Natural' recovery is especially variable in severely impaired patients, underscoring the special clinical importance of prediction for this subgroup. Fractional anisotropy connectomes based on individual tractography of 92 patients were analysed 2 weeks after stroke (TA) and their changes to 3 months after stroke (TC - TA). Motor impairment was assessed using the Fugl-Meyer Upper Extremity (FMUE) scale. Support vector machine classifiers were trained to separate patients with natural recovery from patients without natural recovery based on their whole-brain structural connectomes and to define their respective underlying network patterns, focusing on severely impaired patients (FMUE < 20). Prediction accuracies were cross-validated internally, in one independent dataset and generalized in two independent datasets. The initial connectome 2 weeks after stroke was capable of segregating fitters from non-fitters, most importantly among severely impaired patients (TA: accuracy = 0.92, precision = 0.93). Secondary analyses studying recovery-relevant network characteristics based on the selected features revealed (i) relevant differences between networks contributing to recovery at 2 weeks and network changes over time (TC - TA); and (ii) network properties specific to severely impaired patients. Important features included the parietofrontal motor network including the intraparietal sulcus, premotor and primary motor cortices and beyond them also attentional, somatosensory or multimodal areas (e.g. the insula), strongly underscoring the importance of whole-brain connectome analyses for better predicting and understanding recovery from stroke. Computational approaches based on structural connectomes allowed the individual prediction of natural recovery 2 weeks after stroke onset, especially in the difficult to predict group of severely impaired patients, and identified the relevant underlying neuronal networks. This information will permit patients to be stratified into different recovery groups in clinical settings and will pave the way towards personalized precision neurorehabilitative treatment.


Assuntos
Conectoma , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Máquina de Vetores de Suporte , Imagem de Tensor de Difusão , Humanos , Córtex Motor/fisiopatologia
7.
Brain ; 142(8): 2182-2197, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31257411

RESUMO

Upper limb motor deficits in severe stroke survivors often remain unresolved over extended time periods. Novel neurotechnologies have the potential to significantly support upper limb motor restoration in severely impaired stroke individuals. Here, we review recent controlled clinical studies and reviews focusing on the mechanisms of action and effectiveness of single and combined technology-aided interventions for upper limb motor rehabilitation after stroke, including robotics, muscular electrical stimulation, brain stimulation and brain computer/machine interfaces. We aim at identifying possible guidance for the optimal use of these new technologies to enhance upper limb motor recovery especially in severe chronic stroke patients. We found that the current literature does not provide enough evidence to support strict guidelines, because of the variability of the procedures for each intervention and of the heterogeneity of the stroke population. The present results confirm that neurotechnology-aided upper limb rehabilitation is promising for severe chronic stroke patients, but the combination of interventions often lacks understanding of single intervention mechanisms of action, which may not reflect the summation of single intervention's effectiveness. Stroke rehabilitation is a long and complex process, and one single intervention administrated in a short time interval cannot have a large impact for motor recovery, especially in severely impaired patients. To design personalized interventions combining or proposing different interventions in sequence, it is necessary to have an excellent understanding of the mechanisms determining the effectiveness of a single treatment in this heterogeneous population of stroke patients. We encourage the identification of objective biomarkers for stroke recovery for patients' stratification and to tailor treatments. Furthermore, the advantage of longitudinal personalized trial designs compared to classical double-blind placebo-controlled clinical trials as the basis for precise personalized stroke rehabilitation medicine is discussed. Finally, we also promote the necessary conceptual change from 'one-suits-all' treatments within in-patient clinical rehabilitation set-ups towards personalized home-based treatment strategies, by adopting novel technologies merging rehabilitation and motor assistance, including implantable ones.


Assuntos
Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Interfaces Cérebro-Computador , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Terapia por Exercício/instrumentação , Terapia por Exercício/métodos , Humanos , Robótica/instrumentação , Robótica/métodos
8.
Hum Brain Mapp ; 40(10): 3091-3101, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927325

RESUMO

Hand motor function is often severely affected in stroke patients. Non-satisfying recovery limits reintegration into normal daily life. Understanding stroke-related network changes and identifying common principles that might underlie recovered motor function is a prerequisite for the development of interventional therapies to support recovery. Here, we combine the evaluation of functional activity (multichannel electroencephalography) and structural integrity (diffusion tensor imaging) in order to explain the degree of residual motor function in chronic stroke patients. By recording neural activity during a reaching and grasping task that mimics activities of daily living, the study focuses on deficit-related neural activation patterns. The study showed that the functional role of movement-related beta desynchronization in the supplementary motor area (SMA) for residual hand motor function in stroke patients depends on the microstructural integrity of the corticospinal tract (CST). In particular, in patients with damaged CST, stronger task-related activity in the SMA was associated with worse residual motor function. Neither CST damage nor functional brain activity alone sufficiently explained residual hand motor function. The findings suggest a central role of the SMA in the motor network during reaching and grasping in stroke patients, the degree of functional relevance of the SMA is depending on CST integrity.


Assuntos
Córtex Motor/fisiopatologia , Desempenho Psicomotor/fisiologia , Tratos Piramidais/patologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Ritmo beta , Feminino , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Motores/etiologia , Transtornos Motores/patologia , Transtornos Motores/fisiopatologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
9.
Cerebellum ; 17(3): 359-371, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29243202

RESUMO

Non-invasive brain stimulation (NIBS) combined with behavioral training is a promising strategy to augment recovery after stroke. Current research efforts have been mainly focusing on primary motor cortex (M1) stimulation. However, the translation from proof-of-principle to clinical applications is not yet satisfactory. Possible reasons are the heterogeneous properties of stroke, generalization of the stimulation protocols, and hence the lack of patient stratification. One strategy to overcome these limitations could be the evaluation of alternative stimulation targets, like the cerebellum. In this regard, first studies provided evidence that non-invasive cerebellar stimulation can modulate cerebellar processing and linked behavior in healthy subjects. The cerebellum provides unique plasticity mechanisms and has vast connections to interact with neocortical areas. Moreover, the cerebellum could serve as a non-lesioned entry to the motor or cognitive system in supratentorial stroke. In the current article, we review mechanisms of plasticity in the cortico-cerebellar system after stroke, methods for non-invasive cerebellar stimulation, and possible target symptoms in stroke, like fine motor deficits, gait disturbance, or cognitive impairments, and discuss strategies for multi-focal stimulation.


Assuntos
Cerebelo , Reabilitação do Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Animais , Cerebelo/fisiopatologia , Humanos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos
10.
Cereb Cortex ; 26(4): 1660-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25604611

RESUMO

Cerebellar transcranial direct current stimulation (tDCS) has the potential to modulate cerebellar outputs and visuomotor adaptation. The cerebellum plays a pivotal role in the acquisition and control of skilled hand movements, especially its temporal aspects. We applied cerebellar anodal tDCS concurrently with training of a synchronization-continuation motor task. We hypothesized that anodal cerebellar tDCS will enhance motor skill acquisition. Cerebellar tDCS was applied to the right cerebellum in 31 healthy subjects in a double-blind, sham-controlled, parallel design. During synchronization, the subjects tapped the sequence in line with auditory cues. Subsequently, in continuation, the learned sequence was reproduced without auditory cuing. Motor task performance was evaluated before, during, 90 min, and 24 h after training. Anodal cerebellar tDCS, compared with sham, improved the task performance in the follow-up tests (F1,28 = 5.107, P = 0.032) of the synchronization part. This effect on retention of the skill was most likely mediated by enhanced motor consolidation. We provided first evidence that cerebellar tDCS can enhance the retention of a fine motor skill. This finding supports the promising approach of using noninvasive brain stimulation techniques to restore impaired motor functions in neurological patients, such after a stroke.


Assuntos
Cerebelo/fisiologia , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Destreza Motora , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem
11.
Cereb Cortex ; 25(7): 1707-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24443417

RESUMO

The dentato-thalamo-cortical tract (DTCT) connects the lateral cerebellum with contralateral motor and nonmotor areas, such as the primary motor cortex (M1), the ventral premotor cortex (PMv), and the dorsolateral prefrontal cortex (DLPFC). As the acquisition of precisely timed finger movements requires the interplay between these brain regions, the structural integrity of the underlying connections might explain variance in behavior. Diffusion tensor imaging was used to 1) reconstruct the DTCT connecting the dentate nucleus with M1, PMv, and DLPFC and 2) examine to which extent their microstructural integrity (tract-related fractional anisotropy) relates to learning gains in a motor-sequence learning paradigm consisting of a synchronization and continuation part. Continuous DTCT were reconstructed from the dentate nucleus to all cortical target areas. We found that the microstructural integrity of the DTCT connecting the left dentate nucleus with the right DLPFC was associated with better early consolidation in rhythm continuation (R = -0.69, P = 0.02). The present data further advances the knowledge about a right-hemispheric timing network in the human brain with the DLPFC as an important node contributing to learning gains in precise movement timing.


Assuntos
Núcleos Cerebelares/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Aprendizagem , Destreza Motora , Tálamo/anatomia & histologia , Substância Branca/anatomia & histologia , Adulto , Imagem de Tensor de Difusão , Feminino , Dedos , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Destreza Motora/fisiologia , Vias Neurais/anatomia & histologia , Periodicidade , Adulto Jovem
12.
J Neural Eng ; 21(2)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38408385

RESUMO

Objective. Selective neuromodulation of deep brain regions has for a long time only been possible through invasive approaches, because of the steep depth-focality trade-off of conventional non-invasive brain stimulation (NIBS) techniques.Approach. An approach that has recently emerged for deep NIBS in humans is transcranial Temporal Interference Stimulation (tTIS). However, a crucial aspect for its potential wide use is to ensure that it is tolerable, compatible with efficient blinding and safe.Main results. Here, we show the favorable tolerability and safety profiles and the robust blinding efficiency of deep tTIS targeting the striatum or hippocampus by leveraging a large dataset (119 participants, 257 sessions), including young and older adults and patients with traumatic brain injury. tTIS-evoked sensations were generally rated as 'mild', were equivalent in active and placebo tTIS conditions and did not enable participants to discern stimulation type.Significance. Overall, tTIS emerges as a promising tool for deep NIBS for robust double-blind, placebo-controlled designs.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo/fisiologia , Estimulação Magnética Transcraniana/métodos
13.
Nat Hum Behav ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811696

RESUMO

Reinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, we exploited a recently developed non-invasive deep brain stimulation technique called transcranial temporal interference stimulation (tTIS) during reinforcement motor learning with concurrent neuroimaging, in a randomized, sham-controlled, double-blind study. Striatal tTIS applied at 80 Hz, but not at 20 Hz, abolished the benefits of reinforcement on motor learning. This effect was related to a selective modulation of neural activity within the striatum. Moreover, 80 Hz, but not 20 Hz, tTIS increased the neuromodulatory influence of the striatum on frontal areas involved in reinforcement motor learning. These results show that tTIS can non-invasively and selectively modulate a striatal mechanism involved in reinforcement learning, expanding our tools for the study of causal relationships between deep brain structures and human behaviour.

14.
Med ; 4(9): 591-599.e3, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437575

RESUMO

BACKGROUND: Around 25% of patients who have had a stroke suffer from severe upper-limb impairment and lack effective rehabilitation strategies. The AVANCER proof-of-concept clinical trial (NCT04448483) tackles this issue through an intensive and personalized-dosage cumulative intervention that combines multiple non-invasive neurotechnologies. METHODS: The therapy consists of two sequential interventions, lasting until the patient shows no further motor improvement, for a minimum of 11 sessions each. The first phase involves a brain-computer interface governing an exoskeleton and multi-channel functional electrical stimulation enabling full upper-limb movements. The second phase adds anodal transcranial direct current stimulation of the motor cortex of the lesioned hemisphere. Clinical, electrophysiological, and neuroimaging examinations are performed before, between, and after the two interventions (T0, T1, and T2). This case report presents the results from the first patient of the study. FINDINGS: The primary outcome (i.e., 4-point improvement in the Fugl-Meyer assessment of the upper extremity) was met in the first patient, with an increase from 6 to 11 points between T0 and T2. This improvement was paralleled by changes in motor-network structure and function. Resting-state and transcranial magnetic stimulation-evoked electroencephalography revealed brain functional changes, and magnetic resonance imaging (MRI) measures detected structural and task-related functional changes. CONCLUSIONS: These first results are promising, pointing to feasibility, safety, and potential efficacy of this personalized approach acting synergistically on the nervous and musculoskeletal systems. Integrating multi-modal data may provide valuable insights into underlying mechanisms driving the improvements and providing predictive information regarding treatment response and outcomes. FUNDING: This work was funded by the Wyss-Center for Bio and Neuro Engineering (WCP-030), the Defitech Foundation, PHRT-#2017-205, ERA-NET-NEURON (Discover), and SNSF (320030L_197899, NiBS-iCog).


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Medicina de Precisão , Resultado do Tratamento , Acidente Vascular Cerebral/terapia , Extremidade Superior
15.
Nat Neurosci ; 26(11): 2005-2016, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857774

RESUMO

The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.


Assuntos
Destreza Motora , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Aprendizagem/fisiologia , Encéfalo , Corpo Estriado/fisiologia
16.
Sci Adv ; 8(29): eabo3505, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857838

RESUMO

Practicing a previously unknown motor sequence often leads to the consolidation of motor chunks, which enable its accurate execution at increasing speeds. Recent imaging studies suggest the function of these structures to be more related to the encoding, storage, and retrieval of sequences rather than their sole execution. We found that optimal motor skill acquisition prioritizes the storage of the spatial features of the sequence in memory over its rapid execution early in training, as proposed by Hikosaka in 1999. This process, seemingly diminished in older adults, was partially restored by anodal transcranial direct current stimulation over the motor cortex, as shown by a sharp improvement in accuracy and an earlier yet gradual emergence of motor chunks. These results suggest that the emergence of motor chunks is preceded by the storage of the sequence in memory but is not its direct consequence; rather, these structures depend on, and result from, motor practice.

17.
Heliyon ; 8(11): e11764, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36468121

RESUMO

Task-specific training constitutes a core element for evidence-based rehabilitation strategies targeted at improving upper extremity activity after stroke. Its combination with additional treatment strategies and neurotechnology-based solutions could further improve patients' outcomes. Here, we studied the effect of gamified robot-assisted upper limb motor training on motor performance, skill learning, and transfer with respect to a non-gamified control condition with a group of chronic stroke survivors. The results suggest that a gamified training strategy results in more controlled motor performance during the training phase, which is characterized by a higher accuracy (lower deviance), higher smoothness (lower jerk), but slower speed. The responder analyses indicated that mildly impaired patients benefited most from the gamification approach. In conclusion, gamified robot-assisted motor training, which is personalized to the individual capabilities of a patient, constitutes a promising investigational strategy for further improving motor performance after a stroke.

18.
Front Neurol ; 13: 919511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873764

RESUMO

Effective, patient-tailored rehabilitation to restore upper-limb motor function in severely impaired stroke patients is still missing. If suitably combined and administered in a personalized fashion, neurotechnologies offer a large potential to assist rehabilitative therapies to enhance individual treatment effects. AVANCER (clinicaltrials.gov NCT04448483) is a two-center proof-of-concept trial with an individual based cumulative longitudinal intervention design aiming at reducing upper-limb motor impairment in severely affected stroke patients with the help of multiple neurotechnologies. AVANCER will determine feasibility, safety, and effectivity of this innovative intervention. Thirty chronic stroke patients with a Fugl-Meyer assessment of the upper limb (FM-UE) <20 will be recruited at two centers. All patients will undergo the cumulative personalized intervention within two phases: the first uses an EEG-based brain-computer interface to trigger a variety of patient-tailored movements supported by multi-channel functional electrical stimulation in combination with a hand exoskeleton. This phase will be continued until patients do not improve anymore according to a quantitative threshold based on the FM-UE. The second interventional phase will add non-invasive brain stimulation by means of anodal transcranial direct current stimulation to the motor cortex to the initial approach. Each phase will last for a minimum of 11 sessions. Clinical and multimodal assessments are longitudinally acquired, before the first interventional phase, at the switch to the second interventional phase and at the end of the second interventional phase. The primary outcome measure is the 66-point FM-UE, a significant improvement of at least four points is hypothesized and considered clinically relevant. Several clinical and system neuroscience secondary outcome measures are additionally evaluated. AVANCER aims to provide evidence for a safe, effective, personalized, adjuvant treatment for patients with severe upper-extremity impairment for whom to date there is no efficient treatment available.

19.
Front Radiol ; 2: 930666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37492668

RESUMO

Quantitative magnetic resonance imaging (qMRI) can increase the specificity and sensitivity of conventional weighted MRI to underlying pathology by comparing meaningful physical or chemical parameters, measured in physical units, with normative values acquired in a healthy population. This study focuses on multi-echo T2 relaxometry, a qMRI technique that probes the complex tissue microstructure by differentiating compartment-specific T2 relaxation times. However, estimation methods are still limited by their sensitivity to the underlying noise. Moreover, estimating the model's parameters is challenging because the resulting inverse problem is ill-posed, requiring advanced numerical regularization techniques. As a result, the estimates from distinct regularization strategies are different. In this work, we aimed to investigate the variability and reproducibility of different techniques for estimating the transverse relaxation time of the intra- and extra-cellular space (T2IE) in gray (GM) and white matter (WM) tissue in a clinical setting, using a multi-site, multi-session, and multi-run T2 relaxometry dataset. To this end, we evaluated three different techniques for estimating the T2 spectra (two regularized non-negative least squares methods and a machine learning approach). Two independent analyses were performed to study the effect of using raw and denoised data. For both the GM and WM regions, and the raw and denoised data, our results suggest that the principal source of variance is the inter-subject variability, showing a higher coefficient of variation (CoV) than those estimated for the inter-site, inter-session, and inter-run, respectively. For all reconstruction methods studied, the CoV ranged between 0.32 and 1.64%. Interestingly, the inter-session variability was close to the inter-scanner variability with no statistical differences, suggesting that T2IE is a robust parameter that could be employed in multi-site neuroimaging studies. Furthermore, the three tested methods showed consistent results and similar intra-class correlation (ICC), with values superior to 0.7 for most regions. Results from raw data were slightly more reproducible than those from denoised data. The regularized non-negative least squares method based on the L-curve technique produced the best results, with ICC values ranging from 0.72 to 0.92.

20.
Front Neurol ; 13: 939640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226086

RESUMO

Despite recent improvements, complete motor recovery occurs in <15% of stroke patients. To improve the therapeutic outcomes, there is a strong need to tailor treatments to each individual patient. However, there is a lack of knowledge concerning the precise neuronal mechanisms underlying the degree and course of motor recovery and its individual differences, especially in the view of brain network properties despite the fact that it became more and more clear that stroke is a network disorder. The TiMeS project is a longitudinal exploratory study aiming at characterizing stroke phenotypes of a large, representative stroke cohort through an extensive, multi-modal and multi-domain evaluation. The ultimate goal of the study is to identify prognostic biomarkers allowing to predict the individual degree and course of motor recovery and its underlying neuronal mechanisms paving the way for novel interventions and treatment stratification for the individual patients. A total of up to 100 patients will be assessed at 4 timepoints over the first year after the stroke: during the first (T1) and third (T2) week, then three (T3) and twelve (T4) months after stroke onset. To assess underlying mechanisms of recovery with a focus on network analyses and brain connectivity, we will apply synergistic state-of-the-art systems neuroscience methods including functional, diffusion, and structural magnetic resonance imaging (MRI), and electrophysiological evaluation based on transcranial magnetic stimulation (TMS) coupled with electroencephalography (EEG) and electromyography (EMG). In addition, an extensive, multi-domain neuropsychological evaluation will be performed at each timepoint, covering all sensorimotor and cognitive domains. This project will significantly add to the understanding of underlying mechanisms of motor recovery with a strong focus on the interactions between the motor and other cognitive domains and multimodal network analyses. The population-based, multi-dimensional dataset will serve as a basis to develop biomarkers to predict outcome and promote personalized stratification toward individually tailored treatment concepts using neuro-technologies, thus paving the way toward personalized precision medicine approaches in stroke rehabilitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA