Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 41(9): 2107-2123, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35622010

RESUMO

A major challenge in ecotoxicology is accurately and sufficiently measuring chemical exposures and biological effects given the presence of complex and dynamic contaminant mixtures in surface waters. It is impractical to quantify all chemicals in such matrices over space and time, and even if it were practical, concomitant biological effects would not be elucidated. Our study examined the performance of the Daphnia magna transcriptome to detect distinct responses across three water sources in Minnesota: laboratory (well) waters, wetland waters, and storm waters. Pyriproxyfen was included as a gene expression and male neonate production positive control to examine whether gene expression resulting from exposure to this well-studied juvenoid hormone analog can be detected in complex matrices. Laboratory-reared (<24 h) D. magna were exposed to a water source and/or pyriproxyfen for 16 days to monitor phenotypic changes or 96 h to examine gene expression responses using Illumina HiSeq 2500 (10 million reads per library, 50-bp paired end [2 × 50]). The results indicated that a unique gene expression profile was produced for each water source. At 119 ng/L pyriproxyfen (~25% effect concentration) for male neonate production, as expected, the Doublesex1 gene was up-regulated. In descending order, gene expression patterns were most discernable with respect to pyriproxyfen exposure status, season of stormwater sample collection, and wetland quality, as indicated by the index of biological integrity. However, the biological implications of the affected genes were not broadly clear given limited genome resources for invertebrates. Our study provides support for the utility of short-term whole-organism transcriptomic testing in D. magna to discern sample type, but highlights the need for further work on invertebrate genomics. Environ Toxicol Chem 2022;41:2107-2123. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Invertebrados , Masculino , Transcriptoma , Água/metabolismo , Poluentes Químicos da Água/química , Áreas Alagadas
2.
Water Res ; 145: 332-345, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30165318

RESUMO

Numerous contaminants of emerging concern (CECs) typically occur in urban rivers. Wastewater effluents are a major source of many CECs. Urban runoff (stormwater) is a major urban water budget component and may constitute another major CEC pathway. Yet, stormwater-based CEC field studies are rare. This research investigated 384 CECs in 36 stormwater samples in Minneapolis-St. Paul, Minnesota, USA. Nine sampling sites included three large stormwater conveyances (pipes) and three paired iron-enhanced sand filters (IESFs; untreated inlets and treated outlets). The 123 detected compounds included commercial-consumer compounds, veterinary and human pharmaceuticals, lifestyle and personal care compounds, pesticides, and others. Thirty-one CECs were detected in ≥50% of samples. Individual samples contained a median of 35 targeted CECs (range: 18-54). Overall, median concentrations were ≥10 ng/L for 25 CECs and ≥100 ng/L for 9 CECs. Ranked, hierarchical linear modeling indicated significant seasonal- and site type-based concentration variability for 53 and 30 CECs, respectively, with observed patterns corresponding to CEC type, source, usage, and seasonal hydrology. A primarily warm-weather, diffuse, runoff-based profile included many herbicides. A second profile encompassed winter and/or late summer samples enriched with some recalcitrant, hydrophobic compounds (e.g., PAHs), especially at pipes, suggesting conservative, less runoff-dependent sources (e.g., sediments). A third profile, indicative of mixed conservative/non-runoff, runoff, and/or atmospheric sources and transport that collectively affect a variety of conditions, included various fungicides, lifestyle, non-prescription, and commercial-consumer CECs. Generally, pipe sites had large, diverse land-use catchments, and showed more frequent detections of diverse CECs, but often at lower concentrations; while untreated sites (with smaller, more residential-catchments) demonstrated greater detections of "pseudo-persistent" and other ubiquitous or residentially-associated CECs. Although untreated stormwater transports an array of CECs to receiving waters, IESF treatment significantly removed concentrations of 14 (29%) of the 48 most detected CECs; for these, median removal efficiencies were 26%-100%. Efficient removal of some hydrophobic (e.g., PAHs, bisphenol A) and polar-hydrophilic (e.g., caffeine, nicotine) compounds indicated particulate-bound contaminant filtration and for certain dissolved contaminants, sorption.


Assuntos
Ferro , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Minnesota , Águas Residuárias
3.
Environ Toxicol Chem ; 37(10): 2645-2659, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29978500

RESUMO

Urban stormwater is an important but incompletely characterized contributor to surface-water toxicity. The present study used 5 bioassays of 2 model organisms (Daphnia magna and fathead minnow, Pimephales promelas) to investigate stormwater toxicity and mitigation by full-scale iron-enhanced sand filters (IESFs). Stormwater samples were collected from major stormwater conveyances and full-scale IESFs during 4 seasonal events (winter snowmelt and spring, early summer, and late summer rainfalls) and analyzed for a diverse range of contaminants of emerging concern including pharmaceuticals, personal care products, industrial chemicals, and pesticides. Concurrently, stormwater samples were collected for toxicity testing. Seasonality appeared more influential and consistent than site type for most bioassays. Typically, biological consequences were least in early summer and greatest in late summer and winter. In contrast with the unimproved and occasionally reduced biological outcomes in IESF-treated and late summer samples, water chemistry indicated that numbers and total concentrations of detected organic chemicals, metals, and nutrients were reduced in late summer and in IESF-treated stormwater samples. Some potent toxicants showed more specific seasonality (e.g., high concentrations of polycyclic aromatic hydrocarbons and industrial compounds in winter, pesticides in early summer and spring, flame retardants in late summer), which may have influenced outcomes. Potential explanations for insignificant or unexpected stormwater treatment outcomes include confounding effects of complex stormwater matrices, IESF nutrient removal, and, less likely, unmonitored toxicants. Environ Toxicol Chem 2018;37:2645-2659. © 2018 SETAC.


Assuntos
Cyprinidae/metabolismo , Daphnia/efeitos dos fármacos , Filtração , Ferro/toxicidade , Dióxido de Silício/química , Poluentes Químicos da Água/toxicidade , Animais , Cidades , Cyprinidae/crescimento & desenvolvimento , Comportamento Predatório , Reprodução/efeitos dos fármacos , Estações do Ano , Análise de Sobrevida , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA