RESUMO
Decline of mitochondrial function is a hallmark of cellular aging. To counteract this process, some cells inherit mitochondria asymmetrically to rejuvenate daughter cells. The molecular mechanisms that control this process are poorly understood. Here, we made use of matrix-targeted D-amino acid oxidase (Su9-DAO) to selectively trigger oxidative damage in yeast mitochondria. We observed that dysfunctional mitochondria become fusion-incompetent and immotile. Lack of bud-directed movements is caused by defective recruitment of the myosin motor, Myo2. Intriguingly, intact mitochondria that are present in the same cell continue to move into the bud, establishing that quality control occurs directly at the level of the organelle in the mother. The selection of healthy organelles for inheritance no longer works in the absence of the mitochondrial Myo2 adapter protein Mmr1. Together, our data suggest a mechanism in which the combination of blocked fusion and loss of motor protein ensures that damaged mitochondria are retained in the mother cell to ensure rejuvenation of the bud.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Divisão Celular Assimétrica , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Miosinas/metabolismo , Proteínas Mitocondriais/metabolismoRESUMO
The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.
Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Linhagem Celular , Citosol/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Saccharomyces cerevisiaeRESUMO
Mitochondria are essential organelles of eukaryotic cells and are characterized by their unique and complex membrane system. They are confined from the cytosol by an envelope consisting of two membranes. Signals, metabolites, proteins and lipids have to be transferred across these membranes via proteinaceous contact sites to keep mitochondria functional. In the present study, we identified a novel mitochondrial contact site in Saccharomyces cerevisiae that is formed by the inner membrane protein Cqd1 and the outer membrane proteins Por1 and Om14. Similar to what is found for the mitochondrial porin Por1, Cqd1 is highly conserved, suggesting that this complex is conserved in form and function from yeast to human. Cqd1 is a member of the UbiB protein kinase-like family (also called aarF domain-containing kinases). It was recently shown that Cqd1, in cooperation with Cqd2, controls the cellular distribution of coenzyme Q by a yet unknown mechanism. Our data suggest that Cqd1 is additionally involved in phospholipid homeostasis. Moreover, overexpression of CQD1 and CQD2 causes tethering of mitochondria to the endoplasmic reticulum, which might explain the ability of Cqd2 to rescue ERMES deletion phenotypes.
Assuntos
Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
Mitochondria are dynamic organelles that constantly fuse and divide. These processes (collectively termed mitochondrial dynamics) are important for mitochondrial inheritance and for the maintenance of mitochondrial functions. The core components of the evolutionarily conserved fusion and fission machineries have now been identified, and mechanistic studies have revealed the first secrets of the complex processes that govern fusion and fission of a double membrane-bound organelle. Mitochondrial dynamics was recently recognized as an important constituent of cellular quality control. Defects have detrimental consequences on bioenergetic supply and contribute to the pathogenesis of neurodegenerative diseases. These findings open exciting new directions to explore mitochondrial biology.
Assuntos
Proliferação de Células , Fusão de Membrana/fisiologia , Mitocôndrias/fisiologia , Animais , Morte Celular/fisiologia , Citocinese/fisiologia , Genes Mitocondriais/fisiologia , Humanos , Membranas Mitocondriais/fisiologia , Modelos BiológicosRESUMO
Mitochondria are essential organelles of virtually all eukaryotic organisms. As they cannot be made de novo, they have to be inherited during cell division. In this review, we provide an overview on mitochondrial inheritance in Saccharomyces cerevisiae, a powerful model organism to study asymmetric cell division. Several processes have to be coordinated during mitochondrial inheritance: mitochondrial transport along the actin cytoskeleton into the emerging bud is powered by a myosin motor protein; cell cortex anchors retain a critical fraction of mitochondria in the mother cell and bud to ensure proper partitioning; and the quantity of mitochondria inherited by the bud is controlled during cell cycle progression. Asymmetric division of yeast cells produces rejuvenated daughter cells and aging mother cells that die after a finite number of cell divisions. We highlight the critical role of mitochondria in this process and discuss how asymmetric mitochondrial partitioning and cellular aging are connected.
Assuntos
Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Divisão Celular Assimétrica , Saccharomyces cerevisiae/citologiaRESUMO
The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER-mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.
Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Mitocôndrias/enzimologia , Saccharomyces cerevisiae/enzimologia , Fator 1 de Ribosilação do ADP/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER-mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES-related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane.
Assuntos
Proteínas Fúngicas/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Dosagem de Genes , Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Complexos Multiproteicos , Transporte Proteico , ProteóliseRESUMO
Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.
Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
During the cell cycle each organelle has to be faithfully partitioned to the daughter cells. However, the mechanisms controlling organellar inheritance remain poorly understood. We studied the contribution of the cell cortex protein, Num1, to mitochondrial partitioning in yeast. Live-cell microscopy revealed that Num1 is required for attachment of mitochondria to the cell cortex and retention in mother cells. Electron tomography of anchoring sites revealed plasma membrane invaginations directly contacting the mitochondrial outer membrane. Expression of chimeric plasma membrane tethers rescued mitochondrial fission defects in Δnum1 and Δmdm36 mutants. These findings provide new insights into the coupling of mitochondrial dynamics, immobilization, and retention during inheritance.
Assuntos
Ciclo Celular/genética , Citoplasma/genética , Proteínas do Citoesqueleto/genética , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Proteínas do Citoesqueleto/deficiência , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Imagem com Lapso de TempoRESUMO
Mitochondria are highly dynamic organelles. Frequent cycles of fusion and fission adapt the morphology of the mitochondrial compartment to the metabolic needs of the cell. Mitochondrial fusion is particularly important in respiratory active cells. It allows the spreading of metabolites, enzymes, and mitochondrial gene products throughout the entire mitochondrial compartment. This serves to optimize mitochondrial function and counteracts the accumulation of mitochondrial mutations during aging. Fragmented mitochondria are frequently found in resting cells, and mitochondrial fission plays an important role in the removal of damaged organelles by autophagy. Thus, mitochondrial fusion and fission both contribute to maintenance of mitochondrial function and optimize bioenergetic capacity. Multiple signalling pathways regulate the machinery of mitochondrial dynamics to adapt the shape of the mitochondrial compartment to the metabolic conditions of the cell. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Assuntos
Envelhecimento/metabolismo , Autofagia/fisiologia , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Transdução de Sinais/fisiologia , Envelhecimento/genética , Animais , Humanos , Mitocôndrias/genética , MutaçãoRESUMO
It has long been an unresolved question whether the division machineries that assemble on the mitochondrial surface cooperate with factors inside the organelle. Now, two studies by Connor et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202303147) and Fukuda et al. (2023. Mol. Cell.https://doi.org/10.1016/j.molcel.2023.04.022) have identified an intermembrane space protein that is crucial for mitochondrial double membrane division.
Assuntos
Citocinese , Mitocôndrias , Dinâmica Mitocondrial , Membranas MitocondriaisRESUMO
Mitochondrial fusion and fission are important for a great variety of cellular functions, including energy metabolism, development, aging and cell death. Many of the core components mediating mitochondrial dynamics in human cells have been first identified and mechanistically analyzed in model organisms, such as Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In particular, the functions of FZO/mitofusin and Mgm1/EAT-3/OPA1 in fusion and Dnm1/DRP1 in fission have been remarkably well conserved in yeasts, worms, flies and mammals. On the other hand, mechanisms to coordinate and regulate the activity of these molecular machines appear to be more diverse in different organisms. Here, I will discuss how S. cerevisiae, C. elegans and Drosophila have contributed to our current understanding of the cellular machineries mediating the dynamic behaviour of mitochondria.
Assuntos
Caenorhabditis elegans/citologia , Drosophila melanogaster/citologia , Fusão de Membrana/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/citologia , Animais , Humanos , Proteínas Mitocondriais/metabolismoRESUMO
Mitochondria play crucial roles in programmed cell death and aging. Different stimuli activate distinct mitochondrion-dependent cell death pathways, and aging is associated with a progressive increase in mitochondrial damage, culminating in oxidative stress and cellular dysfunction. Mitochondria are highly dynamic organelles that constantly fuse and divide, forming either interconnected mitochondrial networks or separated fragmented mitochondria. These processes are believed to provide a mitochondrial quality control system and enable an effective adaptation of the mitochondrial compartment to the metabolic needs of the cell. The baker's yeast, Saccharomyces cerevisiae, is an established model for programmed cell death and aging research. The present review summarizes how mitochondrial morphology is altered on induction of cell death or on aging and how this correlates with the induction of different cell death pathways in yeast. We highlight the roles of the components of the mitochondrial fusion and fission machinery that affect and regulate cell death and aging.
Assuntos
Morte Celular/fisiologia , Senescência Celular/fisiologia , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Deleção de Genes , Fusão de Membrana , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estresse OxidativoRESUMO
Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion requires a tight control of Fzo1 levels, which is ensured by Fzo1 turnover. Mdm30 binds to Fzo1 and, dependent on its F-box, mediates proteolysis of Fzo1. Unexpectedly, degradation occurs along a novel proteolytic pathway not involving ubiquitylation, Skp1-Cdc53-F-box (SCF) E3 ubiquitin ligase complexes, or 26S proteasomes, indicating a novel function of an F-box protein. This contrasts to the ubiquitin- and proteasome-dependent turnover of Fzo1 in alpha-factor-arrested yeast cells. Our results therefore reveal not only a critical role of Fzo1 degradation for mitochondrial fusion in vegetatively growing cells but also the existence of two distinct proteolytic pathways for the turnover of mitochondrial outer membrane proteins.
Assuntos
Proteínas F-Box/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/metabolismo , Saccharomyces cerevisiae , Fatores de Tempo , Ubiquitina/metabolismoRESUMO
Genetic analyses in Caenorhabditis elegans have been instrumental in the elucidation of the central cell-death machinery, which is conserved from C. elegans to mammals. One possible difference that has emerged is the role of mitochondria. By releasing cytochrome c, mitochondria are involved in the activation of caspases in mammals. However, there has previously been no evidence that mitochondria are involved in caspase activation in C. elegans. Here we show that mitochondria fragment in cells that normally undergo programmed cell death during C. elegans development. Mitochondrial fragmentation is induced by the BH3-only protein EGL-1 and can be blocked by mutations in the bcl-2-like gene ced-9, indicating that members of the Bcl-2 family might function in the regulation of mitochondrial fragmentation in apoptotic cells. Mitochondrial fragmentation is independent of CED-4/Apaf-1 and CED-3/caspase, indicating that it occurs before or simultaneously with their activation. Furthermore, DRP-1/dynamin-related protein, a key component of the mitochondrial fission machinery, is required and sufficient to induce mitochondrial fragmentation and programmed cell death during C. elegans development. These results assign an important role to mitochondria in the cell-death pathway in C. elegans.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Reguladoras de Apoptose , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Caspases/genética , Caspases/metabolismo , Morte Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas Quinases Associadas com Morte Celular , Expressão Gênica , Modelos Biológicos , Mutação/genética , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Repressoras/genéticaRESUMO
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Humanos , Proteínas Mitocondriais/química , Biogênese de Organelas , Multimerização ProteicaRESUMO
The MDM31 and MDM32 genes are required for normal distribution and morphology of mitochondria in the yeast Saccharomyces cerevisiae. They encode two related proteins located in distinct protein complexes in the mitochondrial inner membrane. Cells lacking Mdm31 and Mdm32 harbor giant spherical mitochondria with highly aberrant internal structure. Mitochondrial DNA (mtDNA) is instable in the mutants, mtDNA nucleoids are disorganized, and their association with Mmm1-containing complexes in the outer membrane is abolished. Mutant mitochondria are largely immotile, resulting in a mitochondrial inheritance defect. Deletion of either one of the MDM31 and MDM32 genes is synthetically lethal with deletion of either one of the MMM1, MMM2, MDM10, and MDM12 genes, which encode outer membrane proteins involved in mitochondrial morphogenesis and mtDNA inheritance. We propose that Mdm31 and Mdm32 cooperate with Mmm1, Mmm2, Mdm10, and Mdm12 in maintenance of mitochondrial morphology and mtDNA.
Assuntos
DNA Mitocondrial/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Epistasia Genética , Instabilidade Genômica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética , Complexos Multiproteicos , Fenótipo , Filogenia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
The production of metabolic energy in form of ATP by oxidative phosphorylation depends on the coordinated action of hundreds of nuclear-encoded mitochondrial proteins and a handful of proteins encoded by the mitochondrial genome (mtDNA). We used the yeast Saccharomyces cerevisiae as a model system to systematically identify the genes contributing to this process. Integration of genome-wide high-throughput growth assays with previously published large data sets allowed us to define with high confidence a set of 254 nuclear genes that are indispensable for respiratory growth. Next, we induced loss of mtDNA in the yeast deletion collection by growth on ethidium bromide-containing medium and identified twelve genes that are essential for viability in the absence of mtDNA (i.e. petite-negative). Replenishment of mtDNA by cytoduction showed that respiratory-deficient phenotypes are highly variable in many yeast mutants. Using a mitochondrial genome carrying a selectable marker, ARG8 m , we screened for mutants that are specifically defective in maintenance of mtDNA and mitochondrial protein synthesis. We found that up to 176 nuclear genes are required for expression of mitochondria-encoded proteins during fermentative growth. Taken together, our data provide a comprehensive picture of the molecular processes that are required for respiratory metabolism in a simple eukaryotic cell.
RESUMO
Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Delta mdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein-protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.