Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999998

RESUMO

The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We have noted that gene expression changes reported vary depending on the nerve injury model and the reported sample collection time point. At a truly chronic timepoint of 10 weeks in our model of chronic neuropathic pain, functional groupings of genes examined include those potentially contributing to anti-inflammation, nerve repair/regeneration, and nociception. Genes altered after treatment with the epigenetic modulator LMK235 are discussed. All of these differentials are key in working toward the development of diagnosis-targeted therapeutics and likely for the timing of when the treatment is provided. The emphasis on the relevance of time post-injury is reiterated here.


Assuntos
Epigênese Genética , Histona Desacetilases , Neuralgia , Neuralgia/genética , Animais , Humanos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Dor Crônica/genética , Dor Facial/genética
2.
Mol Pain ; 19: 17448069231186592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351900

RESUMO

Dynorphin A (1-17) (DynA17) has been identified as a key regulator of both sensory and affective dimensions of chronic pain. Following nerve injury, increases in DynA17 have been reported in the spinal and supraspinal areas involved in chronic pain. Blocking these increases provides therapeutic benefits in preclinical chronic pain models. Although heavily characterized at the behavioral level, how DynA17 mediates its effects at the cellular physiological level has not been investigated. In this report, we begin to decipher how DynA17 mediates its direct effects on mouse dorsal root ganglion (DRG) cells and how intrathecal administration modifies a key node in the pain axis, the periaqueductal gray These findings build on the plethora of literature defining DynA17 as a critical neuropeptide in the pathophysiology of chronic pain syndromes.


Assuntos
Dor Crônica , Neuropeptídeos , Camundongos , Animais , Dinorfinas , Gânglios Espinais
3.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686003

RESUMO

The N-methyl-D-aspartate (NMDA) glutamate receptors function as plasma membrane ionic channels and take part in very tightly controlled cellular processes activating neurogenic and inflammatory pathways. In particular, the NR1 subunit (new terminology: GluN1) is required for many neuronal and non-neuronal cell functions, including plasticity, survival, and differentiation. Physiologic levels of glutamate agonists and NMDA receptor activation are required for normal neuronal functions such as neuronal development, learning, and memory. When glutamate receptor agonists are present in excess, binding to NMDA receptors produces neuronal/CNS/PNS long-term potentiation, conditions of acute pain, ongoing severe intractable pain, and potential excitotoxicity and pathology. The GluNR1 subunit (116 kD) is necessary as the anchor component directing ion channel heterodimer formation, cellular trafficking, and the nuclear localization that directs functionally specific heterodimer formation, cellular trafficking, and nuclear functions. Emerging studies report the relevance of GluN1 subunit composition and specifically that nuclear GluN1 has major physiologic potential in tissue and/or subnuclear functioning assignments. The shift of the GluN1 subunit from a surface cell membrane to nuclear localization assigns the GluN1 promoter immediate early gene behavior with access to nuclear and potentially nucleolar functions. The present narrative review addresses the nuclear translocation of GluN1, focusing particularly on examples of the role of GluN1 in nociceptive processes.


Assuntos
N-Metilaspartato , Nociceptividade , Humanos , Núcleo Celular , Agonistas de Aminoácidos Excitatórios , Dor , Receptores de N-Metil-D-Aspartato/genética
4.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446213

RESUMO

A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble expression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could be purified from bacterial cells in large quantities. Octet measurements further revealed that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10-8 M. Molecular modeling and docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2 antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months. The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors.


Assuntos
Dor Crônica , Neuralgia , Anticorpos de Cadeia Única , Animais , Camundongos , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Receptor de Colecistocinina B , Dor Crônica/terapia , Ribossomos/metabolismo
5.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948407

RESUMO

Non-opioid single-chain variable fragment (scFv) small antibodies were generated as pain-reducing block of P2X4R receptor (P2X4R). A panel of scFvs targeting an extracellular peptide sequence of P2X4R was generated followed by cell-free ribosome display for recombinant antibody selection. After three rounds of bio-panning, a panel of recombinant antibodies was isolated and characterized by ELISA, cross-reactivity analysis, and immunoblotting/immunostaining. Generated scFv antibodies feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their ~30% smaller size. Two anti-P2X4R scFv clones (95, 12) with high specificity and affinity binding were selected for in vivo testing in male and female mice with trigeminal nerve chronic neuropathic pain (FRICT-ION model) persisting for several months in untreated BALBc mice. A single dose of P2X4R scFv (4 mg/kg, i.p.) successfully, completely, and permanently reversed chronic neuropathic pain-like measures in male mice only, providing retention of baseline behaviors indefinitely. Untreated mice retained hypersensitivity, and developed anxiety- and depression-like behaviors within 5 weeks. In vitro P2X4R scFv 95 treatment significantly increased the rheobase of larger-diameter (>25 µm) trigeminal ganglia (TG) neurons from FRICT-ION mice compared to controls. The data support use of engineered scFv antibodies as non-opioid biotherapeutic interventions for chronic pain.


Assuntos
Dor Crônica/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico , Animais , Afinidade de Anticorpos , Células Cultivadas , Dor Crônica/imunologia , Feminino , Masculino , Camundongos , Biblioteca de Peptídeos , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/imunologia , Receptores Purinérgicos P2X4/química , Receptores Purinérgicos P2X4/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia
6.
Neuroimage ; 223: 117343, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32898676

RESUMO

Chronic pain often predicts the onset of psychological distress. Symptoms including anxiety and depression after pain chronification reportedly are caused by brain remodeling/recruitment of the limbic and reward/aversion circuitries. Pain is the primary precipitating factor that has caused opioid overprescribing and continued overuse of opioids leading to the current opioid epidemic. Yet experimental pain therapies often fail in clinical trials. Better understanding of underlying pathologies contributing to pain chronification is needed to address these chronic pain related issues. In the present study, a chronic neuropathic pain model persisting 10 weeks was studied. The model develops both anxiety- and pain-related behavioral measures to mimic clinical pain. The manganese-enhanced magnetic resonance imaging (MEMRI) utilized improved MRI signal contrast in brain regions with higher neuronal activity in the rodent chronic constriction trigeminal nerve injury (CCI-ION) model. T1-weighted MEMRI signal intensity was increased compared to controls in supraspinal regions of the anxiety and aversion circuitry, including anterior cingulate gyrus (ACC), amygdala, habenula, caudate, ventrolateral and dorsomedial periaqueductal gray (PAG). Despite continuing mechanical hypersensitivity, MEMRI T1 signal intensity as the neuronal activity measure, was not significantly different in thalamus and decreased in somatosensory cortex (S1BF) of CCI-ION rats compared to naïve controls. This is consistent with decreased fMRI BOLD signal intensity in thalamus and cortex of patients with longstanding trigeminal neuropathic pain reportedly associated with gray matter volume decrease in these regions. Significant increase in MEMRI T2 signal intensity in thalamus of CCI-ION animals was indication of tissue water content, cell dysfunction and/or reactive astrogliosis. Decreased T2 signal intensity in S1BF cortex of rats with CCI-ION was similar to findings of reduced T2 signals in clinical patients with chronic orofacial pain indicating prolonged astrocyte activation. These findings support use of MEMRI and chronic rodent models for preclinical studies and therapeutic trials to reveal brain sites activated only after neuropathic pain has persisted in timeframes relevant to clinical pain and to observe treatment effects not possible in short-term models which do not have evidence of anxiety-like behaviors. Potential improvement is predicted in the success rate of preclinical drug trials in future studies with this model.


Assuntos
Ansiedade/fisiopatologia , Encéfalo/fisiopatologia , Neuralgia/fisiopatologia , Animais , Ansiedade/etiologia , Mapeamento Encefálico/métodos , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Masculino , Manganês , Vias Neurais/fisiopatologia , Neuralgia/complicações , Ratos Sprague-Dawley
7.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138198

RESUMO

Effective, non-addictive therapeutics for chronic pain remain a critical need. While there are several potential therapeutics that stimulate anti-inflammatory mechanisms to restore homeostasis in the spinal dorsal horn microenvironment, the effectiveness of drugs for neuropathic pain are still inadequate. The convergence of increasing knowledge about the multi-factorial mechanisms underlying neuropathic pain and the mechanisms of drug action from preclinical studies are providing the ability to create pharmaceuticals with better clinical effectiveness. By targeting and activating the peroxisome proliferator-activated receptor gamma subunit (PPARγ), numerous preclinical studies report pleiotropic effects of thiazolidinediones (TDZ) beyond their intended use of increasing insulin, including their anti-inflammatory, renal, cardioprotective, and oncopreventative effects. Several studies find TDZs reduce pain-related behavioral symptoms, including ongoing secondary hypersensitivity driven by central sensitization. Previous studies find increased PPARγ in the spinal cord and brain regions innervated by incoming afferent nerve endings after the induction of neuropathic pain models. PPARγ agonist treatment provides an effective reduction in pain-related behaviors, including anxiety. Data further suggest that improved brain mitochondrial bioenergetics after PPARγ agonist treatment is a key mechanism for reducing hypersensitivity. This review emphasizes two points relevant for the development of better chronic pain therapies. First, employing neuropathic pain models with chronic duration is critical since they can encompass the continuum of molecular and brain circuitry alterations arising over time when pain persists, providing greater relevance to clinical pain syndromes. Assisting in that effort are preclinical models of chronic trigeminal pain syndromes. Secondly, considering the access to nerve and brain neurons and glia across the blood-brain barrier is important. While many therapies have low brain penetrance, a PPARγ agonist with better brain penetrance, ELB00824, has been developed. Purposeful design and recent comparative testing indicate that ELB00824 is extraordinarily efficient and efficacious. ELB00824 provides greatly improved attenuation of pain-related behaviors, including mechanical hypersensitivity, anxiety, and depression in our chronic trigeminal nerve injury models. Physiochemical properties allowing significant brain access and toxicity testing are discussed.


Assuntos
Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Animais , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Camundongos , Pioglitazona/uso terapêutico , Ratos , Rosiglitazona/uso terapêutico , Tiazolidinedionas/uso terapêutico
8.
Mol Pain ; 14: 1744806918796763, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30178698

RESUMO

Chronic orofacial pain is a significant health problem requiring identification of regulating processes. Involvement of epigenetic modifications that is reported for hindlimb neuropathic pain experimental models, however, is less well studied in cranial nerve pain models. Three independent observations reported here are the (1) epigenetic profile in mouse trigeminal ganglia (TG) after trigeminal inflammatory compression (TIC) nerve injury mouse model determined by gene expression microarray, (2) H3K9 acetylation pattern in TG by immunohistochemistry, and (3) efficacy of histone deacetylase (HDAC) inhibitors to attenuate development of hypersensitivity. After TIC injury, ipsilateral whisker pad mechanical sensitization develops by day 3 and persists well beyond day 21 in contrast to sham surgery. Global acetylation of H3K9 decreases at day 21 in ipsilateral TG . Thirty-four genes are significantly ( p < 0.05) overexpressed in the ipsilateral TG by at least two-fold at either 3 or 21 days post-trigeminal inflammatory compression injury. The three genes most overexpressed three days post-trigeminal inflammatory compression nerve injury are nerve regeneration-associated gene ATF3, up 6.8-fold, and two of its regeneration-associated gene effector genes, Sprr1a and Gal, up 174- and 25-fold, respectively. Although transcription levels of 25 of 32 genes significantly overexpressed three days post-trigeminal inflammatory compression return to constitutive levels by day 21, these three regeneration-associated genes remain significantly overexpressed at the later time point. On day 21, when tissues are healed, other differentially expressed genes include 39 of the top 50 upregulated and downregulated genes. Remarkably, preemptive manipulation of gene expression with two HDAC inhibitors (HDACi's), suberanilohydroxamic acid (SAHA) and MS-275, reduces the magnitude and duration of whisker pad mechanical hypersensitivity and prevents the development of a persistent pain state. These findings suggest that trigeminal nerve injury leads to epigenetic modifications favoring overexpression of genes involved in nerve regeneration and that maintaining transcriptional homeostasis with epigenetic modifying drugs could help prevent the development of persistent pain.


Assuntos
Dor Facial/complicações , Regulação da Expressão Gênica/fisiologia , Inibidores de Histona Desacetilases/uso terapêutico , Hiperalgesia/etiologia , Hiperalgesia/prevenção & controle , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Benzamidas/uso terapêutico , Proteínas Ricas em Prolina do Estrato Córneo/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Modelos Animais de Doenças , Dor Facial/etiologia , Dor Facial/patologia , Lateralidade Funcional , Gânglios Espinais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nylons , Limiar da Dor/efeitos dos fármacos , Estimulação Física/efeitos adversos , Piridinas/uso terapêutico , Pirróis/uso terapêutico , Traumatismos do Nervo Trigêmeo/complicações , Vibrissas/inervação
9.
FASEB J ; 31(10): 4216-4225, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28821637

RESUMO

Every institution that is involved in research with animals is expected to have in place policies and procedures for the management of allegations of noncompliance with the Animal Welfare Act and the U.S. Public Health Service Policy on the Humane Care and Use of Laboratory Animals. We present here a model set of recommendations for institutional animal care and use committees and institutional officials to ensure appropriate consideration of allegations of noncompliance with federal Animal Welfare Act regulations that carry a significant risk or specific threat to animal welfare. This guidance has 3 overarching aims: 1) protecting the welfare of research animals; 2) according fair treatment and due process to an individual accused of noncompliance; and 3) ensuring compliance with federal regulations. Through this guidance, the present work seeks to advance the cause of scientific integrity, animal welfare, and the public trust while recognizing and supporting the critical importance of animal research for the betterment of the health of both humans and animals.-Hansen, B. C., Gografe, S., Pritt, S., Jen, K.-L. C., McWhirter, C. A., Barman, S. M., Comuzzie, A., Greene, M., McNulty, J. A., Michele, D. E., Moaddab, N., Nelson, R. J., Norris, K., Uray, K. D., Banks, R., Westlund, K. N., Yates, B. J., Silverman, J., Hansen, K. D., Redman, B. Ensuring due process in the IACUC and animal welfare setting: considerations in developing noncompliance policies and procedures for institutional animal care and use committees and institutional officials.


Assuntos
Comitês de Cuidado Animal , Experimentação Animal , Bem-Estar do Animal , Animais de Laboratório , Direitos Civis , Experimentação Animal/normas , Bem-Estar do Animal/legislação & jurisprudência , Animais , DNA/metabolismo , Humanos
10.
J Neurosci Res ; 95(6): 1336-1346, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27685982

RESUMO

Central noradrenergic centers such as the locus coeruleus (LC) are traditionally viewed as pain inhibitory; however, complex interactions among brainstem pathways and their receptors modulate both inhibition and facilitation of pain. In addition to the well-described role of descending pontospinal pathways that inhibit spinal nociceptive transmission, an emerging body of research now indicates that noradrenergic neurons in the LC and their terminals in the dorsal reticular nucleus (DRt), medial prefrontal cortex (mPFC), spinal dorsal horn, and spinal trigeminal nucleus caudalis participate in the development and maintenance of allodynia and hyperalgesia after nerve injury. With time after injury, we argue that the balance of LC function shifts from pain inhibition to pain facilitation. Thus, the pain-inhibitory actions of antidepressant drugs achieved with elevated noradrenaline concentrations in the dorsal horn may be countered or even superseded by simultaneous activation of supraspinal facilitating systems dependent on α1 -adrenoreceptors in the DRt and mPFC as well as α2 -adrenoreceptors in the LC. Indeed, these opposing actions may account in part for the limited treatment efficacy of tricyclic antidepressants and noradrenaline reuptake inhibitors such as duloxetine for the treatment of chronic pain. We propose that the traditional view of the LC as a pain-inhibitory structure be modified to account for its capacity as a pain facilitator. Future studies are needed to determine the neurobiology of ascending and descending pathways and the pharmacology of receptors underlying LC-mediated pain inhibition and facilitation. © 2016 Wiley Periodicals, Inc.


Assuntos
Dor Crônica/etiologia , Dor Crônica/patologia , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , Animais , Antidepressivos Tricíclicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Cloridrato de Duloxetina/uso terapêutico , Humanos , Locus Cerúleo/efeitos dos fármacos , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico
11.
BMC Physiol ; 17(1): 6, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545586

RESUMO

BACKGROUND: Bladder pain is a prominent symptom in several urological conditions (e.g. infection, painful bladder syndrome/interstitial cystitis, cancer). Understanding the mechanism of bladder pain is important, particularly when the pain is not accompanied by bladder pathology. Stimulation of protease activated receptor 4 (PAR4) in the urothelium results in bladder pain through release of urothelial high mobility group box-1 (HMGB1). HGMB1 has two functionally active redox states (disulfide and all-thiol) and it is not known which form elicits bladder pain. Therefore, we investigated whether intravesical administration of specific HMGB1 redox forms caused abdominal mechanical hypersensitivity, micturition changes, and bladder inflammation in female C57BL/6 mice 24 hours post-administration. Moreover, we determined which of the specific HMGB1 receptors, Toll-like receptor 4 (TLR4) or receptor for advanced glycation end products (RAGE), mediate HMGB1-induced changes. RESULTS: Disulfide HMGB1 elicited abdominal mechanical hypersensitivity 24 hours after intravesical (5, 10, 20 µg/150 µl) instillation. In contrast, all-thiol HMGB1 did not produce abdominal mechanical hypersensitivity in any of the doses tested (1, 2, 5, 10, 20 µg/150 µl). Both HMGB1 redox forms caused micturition changes only at the highest dose tested (20 µg/150 µl) while eliciting mild bladder edema and reactive changes at all doses. We subsequently tested whether the effects of intravesical disulfide HMGB1 (10 µg/150 µl; a dose that did not produce inflammation) were prevented by systemic (i.p.) or local (intravesical) administration of either a TLR4 antagonist (TAK-242) or a RAGE antagonist (FPS-ZM1). Systemic administration of either TAK-242 (3 mg/kg) or FPS-ZM1 (10 mg/kg) prevented HMGB1 induced abdominal mechanical hypersensitivity while only intravesical TLR4 antagonist pretreatment (1.5 mg/ml; not RAGE) had this effect. CONCLUSIONS: The disulfide form of HMGB1 mediates bladder pain directly (not secondary to inflammation or injury) through activation of TLR4 receptors in the bladder. Thus, TLR4 receptors are a specific local target for bladder pain.


Assuntos
Dor Abdominal/metabolismo , Proteína HMGB1/metabolismo , Receptor 4 Toll-Like/metabolismo , Bexiga Urinária/metabolismo , Dor Abdominal/induzido quimicamente , Dor Abdominal/etiologia , Animais , Dissulfetos/administração & dosagem , Dissulfetos/metabolismo , Feminino , Proteína HMGB1/administração & dosagem , Camundongos Endogâmicos C57BL , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Bexiga Urinária/patologia , Micção
12.
Acta Obstet Gynecol Scand ; 95(5): 565-71, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26871269

RESUMO

INTRODUCTION: Despite high access to contraceptive services, 42% of the women who seek an abortion in Sweden have a history of previous abortion(s). The reasons for this high repeat abortion rate remain obscure. The objective of this study was to study the choice of contraceptive method after abortion and related odds of repeat abortions within 3-4 years. MATERIAL AND METHODS: This is a retrospective cohort study based on a medical record review at three hospitals in Sweden. We included 987 women who had an abortion during 2009. We reviewed medical records from the date of the index abortion until the end of 2012 to establish the choice of contraception following the index abortion and the occurrence of repeat abortions. We calculated odds ratios (OR) with 95% CI. RESULTS: While 46% of the women chose oral contraceptives, 34% chose long-acting reversible contraceptives (LARC). LARC was chosen more commonly by women with a previous pregnancy, childbirth and/or abortion. During the follow-up period, 24% of the study population requested one or more repeat abortion(s). Choosing LARC at the time of the index abortion was associated with fewer repeat abortions compared with choosing oral contraceptives (13% vs. 26%, OR 0.36; 95% CI 0.24-0.52). Subdermal implant was as effective as intrauterine device in preventing repeat abortions beyond 3 years. CONCLUSIONS: Choosing LARC was associated with fewer repeat abortions over more than 3 years of follow up.


Assuntos
Aborto Habitual , Aborto Induzido , Anticoncepção , Anticoncepcionais Femininos , Dispositivos Intrauterinos , Aborto Habitual/epidemiologia , Aborto Habitual/etiologia , Aborto Habitual/prevenção & controle , Aborto Induzido/efeitos adversos , Aborto Induzido/estatística & dados numéricos , Adulto , Estudos de Coortes , Anticoncepção/efeitos adversos , Anticoncepção/estatística & dados numéricos , Anticoncepcionais Femininos/administração & dosagem , Anticoncepcionais Femininos/efeitos adversos , Feminino , Humanos , Dispositivos Intrauterinos/efeitos adversos , Dispositivos Intrauterinos/estatística & dados numéricos , Estudos Longitudinais , Gravidez , História Reprodutiva , Suécia/epidemiologia
14.
Mol Pain ; 10: 66, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25403433

RESUMO

BACKGROUND: Chronic Pancreatitis (CP) is a complex and multifactorial syndrome. Many contributing factors result in development of dysfunctional pain in a significant number of patients. Drugs developed to treat a variety of pain states fall short of providing effective analgesia for patients with chronic pancreatitis, often providing minimal to partial pain relief over time with significant side effects. Recently, availability of selective pharmacological tools has enabled great advances in our knowledge of the role of the cannabinoid receptors in pathophysiology. In particular, cannabinoid receptor 2 (CB2) has emerged as an attractive target for management of chronic pain, as demonstrated in several studies with inflammatory and neuropathic preclinical pain models. In this study, the analgesic efficacy of a novel, highly selective CB2 receptor agonist, LY3038404 HCl, is investigated in a chronic pancreatitis pain model, induced with an alcohol/high fat (AHF) diet. RESULTS: Rats fed the AHF diet developed visceral pain-like behaviors detectable by week 3 and reached a maximum at week 5 that persists as long as the diet is maintained. Rats with AHF induced chronic pancreatitis were treated with LY3038404 HCl (10 mg/kg, orally, twice a day for 9 days). The treated animals demonstrated significantly alleviated pain related behaviors after 3 days of dosing, including increased paw withdrawal thresholds (PWT), prolonged abdominal withdrawal latencies (ABWL), and decreased nocifensive responses to noxious 44°C hotplate stimuli. Terminal histological analysis of pancreatic tissue sections from the AHF chronic pancreatitis animals demonstrated extensive injury, including a global pancreatic gland degeneration (cellular atrophy), vacuolization (fat deposition), and fibrosis. After the LY3038404 HCl treatment, pancreatic tissue was significantly protected from severe damage and fibrosis. LY3038404 HCl affected neither open field exploratory behaviors nor dark/light box preferences as measures of higher brain and motor functions. CONCLUSION: LY3038404 HCl, a potent CB2 receptor agonist, possesses tissue protective and analgesic properties without effects on higher brain function. Thus, activation of CB2 receptors is suggested as a potential therapeutic target for visceral inflammation and pain management.


Assuntos
Agonistas de Receptores de Canabinoides/uso terapêutico , Pancreatite Crônica/complicações , Receptor CB1 de Canabinoide/agonistas , Dor Visceral/tratamento farmacológico , Dor Visceral/etiologia , Álcoois/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Adaptação à Escuridão/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Fibrose/etiologia , Fibrose/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Limiar da Dor/efeitos dos fármacos , Pancreatite Crônica/etiologia , Pancreatite Crônica/patologia , Ratos , Ratos Endogâmicos F344 , Tempo de Reação/efeitos dos fármacos , Índice de Gravidade de Doença
15.
Adv Neurobiol ; 35: 125-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38874721

RESUMO

Temporomandibular joint disorders include a variety of clinical syndromes that are difficult to manage if associated with debilitating severe jaw pain. Thus, seeking additional experimental therapies for temporomandibular joint pain reduction is warranted. Targeted enkephalin gene therapy approaches provide clear promise for pain control. The studies detailed here indicate significant analgesia and protection of joint tissue are provided after injection of an overexpression viral vector gene therapy near the joint. The viral vector gene therapy described provides overexpression of naturally occurring opioid peptides after its uptake by trigeminal nerve endings. The viral vectors act as independent "minipump" sources for the opioid peptide synthesis in the neuronal cytoplasm producing the intended biological function, reduction of pain, and tissue repair. The antinociceptive effects provided with this delivery method of opioid expression persist for over 4 weeks. This is coincident with the expected time frame for the duration of the transgene overproduction of the endogenous opioid peptide before its diminution due to dormancy of the virus. These experimental studies establish a basis for the use of replication-defective herpes simplex type 1-based gene therapy for severe chronic inflammatory temporomandibular joint destruction and pain. As innovative means of significantly reducing joint inflammation and preserving tissue architecture, gene therapies may extend their clinical usefulness for patients with temporomandibular joint disorders.


Assuntos
Encefalinas , Terapia Genética , Transtornos da Articulação Temporomandibular , Animais , Encefalinas/metabolismo , Ratos , Transtornos da Articulação Temporomandibular/metabolismo , Transtornos da Articulação Temporomandibular/terapia , Vetores Genéticos , Ratos Sprague-Dawley , Articulação Temporomandibular/metabolismo
16.
J Pain ; 25(2): 302-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37643657

RESUMO

Trigeminal neuralgia is a heterogeneous disorder with likely multifactorial and complex etiology; however, trigeminal nerve demyelination and injury are observed in almost all patients with trigeminal neuralgia. The current management strategies for trigeminal neuralgia primarily involve anticonvulsants and surgical interventions, neither of which directly address demyelination, the pathological hallmark of trigeminal neuralgia, and treatments targeting demyelination are not available. Demyelination of the trigeminal nerve has been historically considered a secondary effect of vascular compression, and as a result, trigeminal neuralgia is not recognized nor treated as a primary demyelinating disorder. In this article, we review the evolution of our understanding of trigeminal neuralgia and provide evidence to propose its potential categorization, at least in some cases, as a primary demyelinating disease by discussing its course and similarities to multiple sclerosis, the most prevalent central nervous system demyelinating disorder. This proposed categorization may provide a basis in investigating novel treatment modalities beyond the current medical and surgical interventions, emphasizing the need for further research into demyelination of the trigeminal sensory pathway in trigeminal neuralgia. PERSPECTIVE: This article proposes trigeminal neuralgia as a demyelinating disease, supported by histological, clinical, and radiological evidence. Such categorization offers a plausible explanation for controversies surrounding trigeminal neuralgia. This perspective holds potential for future research and developing therapeutics targeting demyelination in the condition.


Assuntos
Esclerose Múltipla , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/etiologia , Neuralgia do Trigêmeo/terapia , Nervo Trigêmeo/patologia , Nervo Trigêmeo/cirurgia , Esclerose Múltipla/complicações
17.
Sci Rep ; 14(1): 4517, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402255

RESUMO

PURPOSE Cathepsin B (Cat B) is a cysteine lysosomal protease that is upregulated in many inflammatory diseases and widely expressed in the brain. Here, we used a Cat B activatable near-infrared (NIR) imaging probe to measure glial activation in vivo in the formalin test, a standard orofacial inflammatory pain model. The probe's efficacy was quantified with immunohistochemical analysis of the somatosensory cortex. PROCEDURES Three different concentrations of Cat B imaging probe (30, 50, 100 pmol/200 g bodyweight) were injected intracisternally into the foramen magnum of rats under anesthesia. Four hours later formalin (1.5%, 50 µl) was injected into the upper lip and the animal's behaviors recorded for 45 min. Subsequently, animals were repeatedly scanned using the IVIS Spectrum (8, 10, and 28 h post imaging probe injection) to measure extracellular Cat B activity. Aldehyde fixed brain sections were immunostained with antibodies against microglial marker Iba1 or astrocytic GFAP and detected with fluorescently labeled secondary antibodies to quantify co-localization with the fluorescent probe. RESULTS The Cat B imaging probe only slightly altered the formalin test results. Nocifensive behavior was only reduced in phase 1 in the 100 pmol group. In vivo measured fluorescence efficiency was highest in the 100 pmol group 28 h post imaging probe injection. Post-mortem immunohistochemical analysis of the somatosensory cortex detected the greatest amount of NIR fluorescence localized on microglia and astrocytes in the 100 pmol imaging probe group. Sensory neuron neuropeptide and cell injury marker expression in ipsilateral trigeminal ganglia was not altered by the presence of fluorescent probe. CONCLUSIONS These data demonstrate a concentration- and time-dependent visualization of extracellular Cat B in activated glia in the formalin test using a NIR imaging probe. Intracisternal injections are well suited for extracellular CNS proteinase detection in conditions when the blood-brain barrier is intact.


Assuntos
Catepsina B , Corantes Fluorescentes , Ratos , Animais , Catepsina B/metabolismo , Medição da Dor , Corantes Fluorescentes/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Microglia/metabolismo , Dor Facial/metabolismo , Formaldeído/metabolismo
18.
J Pain ; 25(2): 428-450, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777035

RESUMO

Identifying and resolving molecular complexities underlying chronic neuropathic pain is a significant challenge. Among the numerous classes of histone deacetylases, Class I (HDAC 1-3) and Class III (sirtuins) have been best studied in experimental pain models where inhibitor pre-treatments but not post-treatments abrogate the development of pain-related behaviors. Post-treatment here in week 3 with less well-studied Class IIa HDAC4/5 selective inhibitor LMK235 diminishes the trigeminal ganglia increases of HDAC5 RNA and protein in two chronic orofacial neuropathic pain models to levels measured in naïve mice at week 10 post-model induction. HDAC4 RNA reported in lower limb inflammatory pain models is not evident in the trigeminal models. Many other gene alterations persisting at week 10 in the trigeminal ganglia (TG) are restored to naïve levels in mice treated with LMK235. Important pain-related upregulated genes Hoxc8,b9,d8; P2rx4, Cckbr, growth hormone (Gh), and schlafen (Slfn4) are greatly reduced in LMK235-treated mice. Fold increase in axon regeneration/repair genes Sostdc1, TTr, and Folr1 after injury are doubled by LMK235 treatment. LMK235 reduces the excitability of trigeminal ganglia neurons in culture isolated from nerve injured mice compared to vehicle-treated controls, with no effect on neurons from naïve mice. Electrophysiological characterization profile includes a shift where ∼20% of the small neurons recorded under LMK235-treated conditions are high threshold, whereas none of the neurons under control conditions have high thresholds. LMK235 reverses long-standing mechanical and cold hypersensitivity in chronic trigeminal neuropathic pain models in males and females (5,10 mg/kg), preventing development of anxiety- and depression-like behaviors. PERSPECTIVE: Data here support HDAC5 as key epigenetic factor in chronic trigeminal neuropathic pain persistence, validated with the study of RNA alterations, TG neuronal excitability, and pain-related behaviors. HDAC5 inhibitor given in week 3 restores RNA balance at 10 weeks, while upregulation remains for response to wound healing and chronic inflammation RNAs.


Assuntos
Benzamidas , Inibidores de Histona Desacetilases , Neuralgia , Animais , Masculino , Camundongos , Axônios , Epigênese Genética , Histona Desacetilases/metabolismo , Regeneração Nervosa , Neuralgia/tratamento farmacológico , Gânglio Trigeminal/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Benzamidas/administração & dosagem
19.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895314

RESUMO

Human and mouse dorsal root ganglia (hDRG and mDRG) neurons are important tools in understanding the molecular and electrophysiological mechanisms that underlie nociception and drive pain behaviors. One of the simplest differences in firing phenotypes is that neurons are single-firing (exhibit only one action potential) or multi-firing (exhibit 2 or more action potentials). To determine if single- and multi-firing hDRG exhibit differences in intrinsic properties, firing phenotypes, and AP waveform properties, and if these properties could be used to predict multi-firing, we measured 22 electrophysiological properties by whole-cell patch-clamp electrophysiology of 94 hDRG neurons from 6 male and 4 female donors. We then analyzed the data using several machine learning models to determine if these properties could be used to predict multi-firing. We used 1000 iterations of Monte Carlo Cross Validation to split the data into different train and test sets and tested the Logistic Regression, k-Nearest Neighbors, Random Forest, Supported Vector Classification, and XGBoost machine learning models. All models tested had a greater than 80% accuracy on average, with Supported Vector Classification and XGBoost performing the best. We found that several properties correlated with multi-firing hDRG neurons and together could be used to predict multi-firing neurons in hDRG including a long decay time, a low rheobase, and long first spike latency. We also found that the hDRG models were able to predict multi-firing with 90% accuracy in mDRG. Targeting the neuronal properties that lead to multi-firing could elucidate better targets for treatment of chronic pain.

20.
eNeuro ; 11(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39299808

RESUMO

Human and mouse dorsal root ganglia (hDRG and mDRG) neurons are important tools in understanding the molecular and electrophysiological mechanisms that underlie nociception and drive pain behaviors. One of the simplest differences in firing phenotypes is that neurons are single-firing (exhibit only one action potential) or multi-firing (exhibit 2 or more action potentials). To determine if single- and multi-firing hDRG neurons exhibit differences in intrinsic properties, firing phenotypes, and AP waveform properties, and if these properties could be used to predict multi-firing, we measured 22 electrophysiological properties by whole-cell patch-clamp electrophysiology of 94 hDRG neurons from six male and four female donors. We then analyzed the data using several machine learning models to determine if these properties could be used to predict multi-firing. We used 1,000 iterations of Monte Carlo cross-validation to split the data into different train and test sets and tested the logistic regression, k-nearest neighbors, random forest, support vector classifier, and XGBoost machine learning models. All models tested had a >80% accuracy on average, with support vector classifier, and XGBoost performing the best. We found that several properties correlated with multi-firing hDRG neurons and together could be used to predict multi-firing neurons in hDRG including a long decay time, a low rheobase, and long first spike latency. We also found that the hDRG models were able to predict multi-firing with 90% accuracy in mDRG neurons. Understanding these properties could be beneficial in the elucidation of targets on peripheral sensory neurons related to pain.


Assuntos
Potenciais de Ação , Gânglios Espinais , Aprendizado de Máquina , Neurônios , Animais , Gânglios Espinais/fisiologia , Gânglios Espinais/citologia , Masculino , Feminino , Humanos , Potenciais de Ação/fisiologia , Camundongos , Neurônios/fisiologia , Adulto , Técnicas de Patch-Clamp , Pessoa de Meia-Idade , Fenômenos Eletrofisiológicos/fisiologia , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA