Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 632(8027): 1145-1154, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862028

RESUMO

Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, Axiom and Polaris. The SOMA resource represents a more than tenfold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome datasets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific mouse datasets. Leveraging the datasets, tools and resources in SOMA can help to accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation and countermeasure data for upcoming lunar, Mars and exploration-class missions.


Assuntos
Medicina Aeroespacial , Astronautas , Bancos de Espécimes Biológicos , Bases de Dados Factuais , Internacionalidade , Voo Espacial , Animais , Feminino , Humanos , Masculino , Camundongos , Medicina Aeroespacial/métodos , Atlas como Assunto , Citocinas/metabolismo , Conjuntos de Dados como Assunto , Epigenômica , Perfilação da Expressão Gênica , Genômica , Metabolômica , Microbiota/genética , Multiômica , Especificidade de Órgãos , Medicina de Precisão/tendências , Proteômica , Voo Espacial/estatística & dados numéricos , Telômero/metabolismo , Gêmeos
2.
Genes (Basel) ; 14(1)2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36672826

RESUMO

Pathogenic bacteria and viruses in medical environments can lead to treatment complications and hospital-acquired infections. Current disinfection protocols do not address hard-to-access areas or may be beyond line-of-sight treatment, such as with ultraviolet radiation. The COVID-19 pandemic further underscores the demand for reliable and effective disinfection methods to sterilize a wide array of surfaces and to keep up with the supply of personal protective equipment (PPE). We tested the efficacy of Sani Sport ozone devices to treat hospital equipment and surfaces for killing Escherichia coli, Enterococcus faecalis, Bacillus subtilis, and Deinococcus radiodurans by assessing Colony Forming Units (CFUs) after 30 min, 1 h, and 2 h of ozone treatment. Further gene expression analysis was conducted on live E. coli K12 immediately post treatment to understand the oxidative damage stress response transcriptome profile. Ozone treatment was also used to degrade synthetic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA as assessed by qPCR CT values. We observed significant and rapid killing of medically relevant and environmental bacteria across four surfaces (blankets, catheter, remotes, and syringes) within 30 min, and up to a 99% reduction in viable bacteria at the end of 2 h treatment cycles. RNA-seq analysis of E. coli K12 revealed 447 differentially expressed genes in response to ozone treatment and an enrichment for oxidative stress response and related pathways. RNA degradation of synthetic SARS-CoV-2 RNA was seen an hour into ozone treatment as compared to non-treated controls, and a non-replicative form of the virus was shown to have significant RNA degradation at 30 min. These results show the strong promise of ozone treatment of surfaces for reducing the risk of hospital-acquired infections and as a method for degradation of SARS-CoV-2 RNA.


Assuntos
COVID-19 , Infecção Hospitalar , Ozônio , Humanos , SARS-CoV-2/genética , RNA Viral/análise , Desinfecção/métodos , Ozônio/farmacologia , Escherichia coli/genética , Pandemias , Raios Ultravioleta , Bactérias
3.
Nat Commun ; 12(1): 1660, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712587

RESUMO

In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.


Assuntos
COVID-19/genética , COVID-19/virologia , SARS-CoV-2/genética , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antivirais/farmacologia , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19 , Interações Medicamentosas , Feminino , Perfilação da Expressão Gênica , Genoma Viral , Antígenos HLA/genética , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Cidade de Nova Iorque/epidemiologia , Técnicas de Amplificação de Ácido Nucleico , Pandemias , RNA-Seq , SARS-CoV-2/classificação , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
4.
iScience ; 23(12): 101844, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33376973

RESUMO

Liquid biopsies based on cell-free DNA (cfDNA) or exosomes provide a noninvasive approach to monitor human health and disease but have not been utilized for astronauts. Here, we profile cfDNA characteristics, including fragment size, cellular deconvolution, and nucleosome positioning, in an astronaut during a year-long mission on the International Space Station, compared to his identical twin on Earth and healthy donors. We observed a significant increase in the proportion of cell-free mitochondrial DNA (cf-mtDNA) inflight, and analysis of post-flight exosomes in plasma revealed a 30-fold increase in circulating exosomes and patient-specific protein cargo (including brain-derived peptides) after the year-long mission. This longitudinal analysis of astronaut cfDNA during spaceflight and the exosome profiles highlights their utility for astronaut health monitoring, as well as cf-mtDNA levels as a potential biomarker for physiological stress or immune system responses related to microgravity, radiation exposure, and the other unique environmental conditions of spaceflight.

5.
bioRxiv ; 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32511352

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets.

6.
Precis Clin Med ; 2(4): 259-269, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31886035

RESUMO

It is been shown that spaceflight-induced molecular, cellular, and physiologic changes cause alterations across many modalities of the human body, including cardiovascular, musculoskeletal, hematological, immunological, ocular, and neurological systems. The Twin Study, a multi-year, multi-omic study of human response to spaceflight, provided detailed and comprehensive molecular and cellular maps of the human response to radiation, microgravity, isolation, and stress. These rich data identified epigenetic, gene expression, inflammatory, and metabolic responses to spaceflight, facilitating a better biomedical roadmap of features that should be monitored and safe-guarded in upcoming missions. Further, by exploring new developments in pre-clinical models and clinical trials, we can begin to design potential cellular interventions for exploration-class missions to Mars and potentially farther. This paper will discuss the overall risks astronauts face during spaceflight, what is currently known about human response to these risks, what pharmaceutical interventions exist for use in space, and which tools of precision medicine and cellular engineering could be applied to aerospace and astronaut medicine.

7.
Peptides ; 79: 39-48, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26976270

RESUMO

PACAP-27 and PACAP-38 are the exclusive physiological ligands for the mammalian PAC1 receptor. The role of C-terminal amidation of these ligands at that receptor was examined in neuroendocrine cells expressing the PAC1 receptor endogenously and in non-neuroendocrine cells in which the human and rat PAC1 receptors were expressed from stable single-copy genes driven by the CMV promoter, providing stoichiometrically appropriate levels of this Gs-coupled GPCR in order to examine the potency and intrinsic activity of PACAP ligands and their des-amidated congeners. We found that replacement of the C-terminal glycine residues of PACAP-27 and -38 with a free acid; or extension of either peptide with the two to three amino acids normally found at these positions in PACAP processing intermediates in vivo following endoproteolytic cleavage and after exoproteolytic trimming and glycine-directed amidated, were equivalent in potency to the fully processed peptides in a variety of cell-based assays. These included real-time monitoring of cyclic AMP generation in both NS-1 neuroendocrine cells and non-neuroendocrine HEK293 cells; PKA-dependent gene activation in HEK293 cells; and neuritogenesis and cell growth arrest in NS-1 cells. The specific implications for the role of amidation in arming of secretin-related neuropeptides for biological function, and the general implications for neuropeptide-based delivery in the context of gene therapy, are discussed.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Amidas/farmacologia , Sequência de Aminoácidos , Animais , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Sistemas do Segundo Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA