Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 304(8): E863-73, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23443925

RESUMO

Fibroblast growth factor 23 (FGF23) is a hormone released primarily by osteocytes that regulates phosphate and vitamin D metabolism. Recent observational studies in humans suggest that circulating FGF23 is independently associated with cardiac hypertrophy and increased mortality, but it is unknown whether FGF23 can directly alter cardiac function. We found that FGF23 significantly increased cardiomyocyte cell size in vitro, the expression of gene markers of cardiac hypertrophy, and total protein content of cardiac muscle. In addition, FGFR1 and FGFR3 mRNA were the most abundantly expressed FGF receptors in cardiomyocytes, and the coreceptor α-klotho was expressed at very low levels. We tested an animal model of chronic kidney disease (Col4a3(-/-) mice) that has elevated serum FGF23. We found elevations in common hypertrophy gene markers in Col4a3(-/-) hearts compared with wild type but did not observe changes in wall thickness or cell size by week 10. However, the Col4a3(-/-) hearts did show reduced fractional shortening (-17%) and ejection fraction (-11%). Acute exposure of primary cardiomyocytes to FGF23 resulted in elevated intracellular Ca(2+) ([Ca(2+)](i); F/F(o) + 86%) which was blocked by verapamil pretreatment. FGF23 also increased ventricular muscle strip contractility (67%), which was inhibited by FGF receptor antagonism. We hypothesize that although FGF23 can acutely increase [Ca(2+)](i), chronically this may lead to decreases in contractile function or stimulate cardiac hypertrophy, as observed with other stress hormones. In conclusion, FGF23 is a novel bone/heart endocrine factor and may be an important mediator of cardiac Ca(2+) regulation and contractile function during chronic kidney disease.


Assuntos
Cálcio/metabolismo , Cardiomegalia/fisiopatologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Contração Miocárdica/fisiologia , Nefrite Hereditária/fisiopatologia , Animais , Autoantígenos/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Colágeno Tipo IV/genética , Modelos Animais de Doenças , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/farmacologia , Glucuronidase/genética , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Cultura Primária de Células , Receptores de Fatores de Crescimento de Fibroblastos/genética
2.
Cell Cycle ; 14(10): 1507-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785867

RESUMO

We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts.


Assuntos
Dinoprostona/farmacologia , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Acetilcisteína/farmacologia , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Prostaglandina E Subtipo EP1/agonistas , Receptores de Prostaglandina E Subtipo EP1/genética , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP3/agonistas , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/genética , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia , Triazóis/farmacologia
3.
J Biomed Mater Res A ; 68(4): 660-7, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-14986321

RESUMO

The potential use of oxirane (epoxy) monomers in dental composite development raises the concern to test their genetic safety. Oxiranes can interact with DNA resulting in DNA damage, mutations, and possibly carcinogenesis. Our objective was to evaluate DNA damage and cell-cycle disruption in mammalian cells after exposure to epoxy monomers. The experimental oxiranes were Araldite trade mark GY 281, Cyracure trade mark UVR 6105 and 1,3-dioxane-2,2'-1,3-dioxane-5',4'-bicyclo[4.1.0] heptane (DECHE-TOSU). L929 fibroblast cells were incubated with the monomer for 7 and 24 h at 37 degrees C/5% CO(2). After incubation, cells were subjected to DNA damage alkaline unwinding assay and flow cytometry cell-cycle analysis. Lack of DNA damage and cell-cycle effects were observed with DECHE-TOSU. Exposure to subtoxic doses of Araldite trade mark GY 281 or Cyracure trade mark UVR 6105 caused DNA damage and cell cycle disruption. A significant (p < 0.01) effect for Araldite trade mark GY 281 was observed with cell populations in G1 and G2/M when compared to DMSO solvent control. Similar comparisons revealed significant differences in G2/M cell cycle population after 24-h exposure to 100 microM Cyracure trade mark UVR 6105. For comparison, BISGMA was evaluated to produce DNA damage but without cell-cycle effects suggesting DNA repair mechanisms were effective. Our findings with DECHE-TOSU, Araldite trade mark GY 281 and Cyracure trade mark UVR 6105 indicated cell-cycle disruption followed DNA damage.


Assuntos
Dano ao DNA , Materiais Dentários/toxicidade , Óxido de Etileno/toxicidade , Animais , Ciclo Celular/fisiologia , Fibroblastos , Camundongos
4.
J Biomed Mater Res A ; 65(1): 89-94, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12635158

RESUMO

The objective of this study was to measure IL-6 release from LPS-stimulated and -unstimulated macrophages exposed to extracts from fresh and aged Scotchbond Multipurpose Plus adhesive disks (5 mm in diameter by 2 mm in thickness) light cured for 10, 20, or 40 s. One set of disks was aged for 16 weeks at 4 degrees C. Extracts were prepared by incubating three disks in 1 mL of serum-free culture medium for 72 h at 37 degrees C. Then macrophages (RAW 264.7) were exposed to the extracts (6.25-50 microL) for 72 h at 37 degrees C/5% CO(2). Supernatants were analyzed for cytokine levels (ELISA), and the monolayer of cells was assessed for viability (MTT assay). Unlike adhesive disk age, curing time affected cell viability. Disk extracts cured for 10 s were more cytotoxic (p < 0.05) than were extracts from 20- or 40-s cured disks. Macrophage release of IL-6 was stimulated significantly (p < 0.01) by extracts from fresh 10-s cured disks, up to 777 pg/mL and by 2 microg/mL of LPS (1174 pg/mL). The LPS response was significantly (p < 0.05) suppressed by 50 microL of extracts, which may be related to the enhanced cytotoxicity exhibited by LPS in combination with extracts. This study has demonstrated the possibility that IL-6 release is stimulated by light-cure dental adhesive applications using 10-s curings.


Assuntos
Adesivos , Materiais Dentários , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Adesivos/efeitos da radiação , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Citocinas/biossíntese , Citocinas/metabolismo , Materiais Dentários/efeitos da radiação , Ensaio de Imunoadsorção Enzimática , Luz , Macrófagos/efeitos dos fármacos , Macrófagos/efeitos da radiação , Camundongos , Estimulação Química , Sais de Tetrazólio , Tiazóis
5.
BMC Pharmacol Toxicol ; 15: 73, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25519194

RESUMO

BACKGROUND: We have previously shown that the thromboxane (TXA2) receptor agonist, U46619, can directly induce ventricular arrhythmias that were associated with increases in intracellular calcium in cardiomyocytes. Since TXA2 is an inflammatory mediator and induces direct calcium changes in cardiomyocytes, we hypothesized that TXA2 released during ischemia or inflammation could also cause cardiac remodeling. METHODS: U46619 (0.1-10 µM) was applied to isolated adult mouse ventricular primary cardiomyocytes, mouse ventricular cardiac muscle strips, and cultured HL-1 cardiomyocytes and markers of hypertrophy and cell death were measured. RESULTS: We found that TXA2 receptors were expressed in ventricular cardiomyocytes and were functional via calcium imaging. U46619 treatment for 24 h did not increase expression of pathological hypertrophy genes (atrial natriuretic peptide, ß-myosin heavy chain, skeletal muscle α-actin) and it did not increase protein synthesis. There was also no increase in cardiomyocyte size after 48 h treatment with U46619 as measured by flow cytometry. However, U46619 (0.1-10 µM) caused a concentration-dependent increase in cardiomyocyte death (trypan blue, MTT assays, visual cell counts and TUNEL stain) after 24 h. Treatment of cells with the TXA2 receptor antagonist SQ29548 and inhibitors of the IP3 pathway, gentamicin and 2-APB, eliminated the increase in cell death induced by U46619. CONCLUSIONS: Our data suggests that TXA2 does not induce cardiac hypertrophy, but does induce cell death that is mediated in part by IP3 signaling pathways. These findings may provide important therapeutic targets for inflammatory-induced cardiac apoptosis that can lead to heart failure.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Compostos de Boro/farmacologia , Cardiomegalia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Gentamicinas/farmacologia , Masculino , Camundongos , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA