Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 297(2): 100959, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265304

RESUMO

MAGEL2 encodes the L2 member of the melanoma-associated antigen gene (MAGE) protein family, truncating mutations of which can cause Schaaf-Yang syndrome, an autism spectrum disorder. MAGEL2 is also inactivated in Prader-Willi syndrome, which overlaps clinically and mechanistically with Schaaf-Yang syndrome. Studies to date have only investigated the C-terminal portion of the MAGEL2 protein, containing the MAGE homology domain that interacts with RING-E3 ubiquitin ligases and deubiquitinases to form protein complexes that modify protein ubiquitination. In contrast, the N-terminal portion of the MAGEL2 protein has never been studied. Here, we find that MAGEL2 has a low-complexity intrinsically disordered N-terminus rich in Pro-Xn-Gly motifs that is predicted to mediate liquid-liquid phase separation to form biomolecular condensates. We used proximity-dependent biotin identification (BioID) and liquid chromatography-tandem mass spectrometry to identify MAGEL2-proximal proteins, then clustered these proteins into functional networks. We determined that coding mutations analogous to disruptive mutations in other MAGE proteins alter these networks in biologically relevant ways. Proteins identified as proximal to the N-terminal portion of MAGEL2 are primarily involved in mRNA metabolic processes and include three mRNA N 6-methyladenosine (m6A)-binding YTHDF proteins and two RNA interference-mediating TNRC6 proteins. We found that YTHDF2 coimmunoprecipitates with MAGEL2, and coexpression of MAGEL2 reduces the nuclear accumulation of YTHDF2 after heat shock. We suggest that the N-terminal region of MAGEL2 may have a role in RNA metabolism and in particular the regulation of mRNAs modified by m6A methylation. These results provide mechanistic insight into pathogenic MAGEL2 mutations associated with Schaaf-Yang syndrome and related disorders.


Assuntos
Síndrome de Prader-Willi , Proteínas/química , Proteínas/metabolismo , RNA/metabolismo , Humanos , Mutação , Fenótipo , Domínios Proteicos
2.
Hum Genet ; 139(12): 1513-1529, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32529326

RESUMO

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by the loss of function of a set of imprinted genes on chromosome 15q11-15q13. One of these genes, NDN, encodes necdin, a protein that is important for neuronal differentiation and survival. Loss of Ndn in mice causes defects in the formation and function of the nervous system. Necdin is a member of the melanoma-associated antigen gene (MAGE) protein family. The functions of MAGE proteins depend highly on their interactions with other proteins, and in particular MAGE proteins interact with E3 ubiquitin ligases and deubiquitinases to form MAGE-RING E3 ligase-deubiquitinase complexes. Here, we used proximity-dependent biotin identification (BioID) and mass spectrometry (MS) to determine the network of protein-protein interactions (interactome) of the necdin protein. This process yielded novel as well as known necdin-proximate proteins that cluster into a protein network. Next, we used BioID-MS to define the interactomes of necdin proteins carrying coding variants. Variant necdin proteins had interactomes that were distinct from wildtype necdin. BioID-MS is not only a useful tool to identify protein-protein interactions, but also to analyze the effects of variants of unknown significance on the interactomes of proteins involved in genetic disease.


Assuntos
Substituição de Aminoácidos/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Mapas de Interação de Proteínas/genética , Ubiquitina-Proteína Ligases/genética , Animais , Biotinilação/genética , Diferenciação Celular/genética , Enzimas Desubiquitinantes/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/ultraestrutura , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Neurônios/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , Síndrome de Prader-Willi/genética , Conformação Proteica , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/química
3.
Hum Mol Genet ; 26(21): 4215-4230, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973533

RESUMO

In Prader-Willi syndrome (PWS), obesity is caused by the disruption of appetite-controlling pathways in the brain. Two PWS candidate genes encode MAGEL2 and necdin, related melanoma antigen proteins that assemble into ubiquitination complexes. Mice lacking Magel2 are obese and lack leptin sensitivity in hypothalamic pro-opiomelanocortin neurons, suggesting dysregulation of leptin receptor (LepR) activity. Hypothalamus from Magel2-null mice had less LepR and altered levels of ubiquitin pathway proteins that regulate LepR processing (Rnf41, Usp8, and Stam1). MAGEL2 increased the cell surface abundance of LepR and decreased their degradation. LepR interacts with necdin, which interacts with MAGEL2, which complexes with RNF41 and USP8. Mutations in the MAGE homology domain of MAGEL2 suppress RNF41 stabilization and prevent the MAGEL2-mediated increase of cell surface LepR. Thus, MAGEL2 and necdin together control LepR sorting and degradation through a dynamic ubiquitin-dependent pathway. Loss of MAGEL2 and necdin may uncouple LepR from ubiquitination pathways, providing a cellular mechanism for obesity in PWS.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Prader-Willi/metabolismo , Proteínas/metabolismo , Receptores para Leptina/metabolismo , Animais , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HEK293 , Humanos , Hipotálamo/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Leptina/genética , Leptina/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Obesidade/genética , Obesidade/metabolismo , Síndrome de Prader-Willi/genética , Transporte Proteico , Proteínas/genética , Receptores para Leptina/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
4.
Hum Mol Genet ; 25(17): 3798-3809, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436578

RESUMO

Prader-Willi syndrome is characterized by severe hypotonia in infancy, with decreased lean mass and increased fat mass in childhood followed by severe hyperphagia and consequent obesity. Scoliosis and other orthopaedic manifestations of hypotonia are common in children with Prader-Willi syndrome and cause significant morbidity. The relationships among hypotonia, reduced muscle mass and scoliosis have been difficult to establish. Inactivating mutations in one Prader-Willi syndrome candidate gene, MAGEL2, cause a Prader-Willi-like syndrome called Schaaf-Yang syndrome, highlighting the importance of loss of MAGEL2 in Prader-Willi syndrome phenotypes. Gene-targeted mice lacking Magel2 have excess fat and decreased muscle, recapitulating altered body composition in Prader-Willi syndrome. We now demonstrate that Magel2 is expressed in the developing musculoskeletal system, and that loss of Magel2 causes muscle-related phenotypes in mice consistent with atrophy caused by altered autophagy. Magel2-null mice serve as a preclinical model for therapies targeting muscle structure and function in children lacking MAGEL2 diagnosed with Prader-Willi or Schaaf-Yang syndrome.


Assuntos
Antígenos de Neoplasias/genética , Músculo Esquelético/patologia , Síndrome de Prader-Willi/patologia , Proteínas/genética , Animais , Antígenos de Neoplasias/metabolismo , Autofagia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Síndrome de Prader-Willi/genética , Proteínas/metabolismo
5.
Mol Genet Genomics ; 293(3): 725-736, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29327328

RESUMO

Autism spectrum disorder (ASD) is defined by the triad of deficits in social interactions, deficits in communication, and repetitive behaviors. Common co-morbidities in syndromic forms of ASD include intellectual disability, seizures, and obesity. We asked whether very obese children with ASD had different behavioral, physical and genetic characteristics compared to children with ASD who were not obese. We found that very obese children with ASD had significantly poorer scores on standardized behavioral tests. Very obese boys with ASD had lower full scale IQ and increased impairments with respect to stereotypies, communication and social skills. Very obese girls with ASD had increased impairments with respect to irritability and oppositional defiant behavior. We identified genetic lesions in a subset of the children with ASD and obesity and attempted to identify enriched biological pathways. Our study demonstrates the value of identifying co-morbidities in children with ASD as we move forward towards understanding the biological processes that contribute to this complex disorder and prepare to design customized treatments that target the diverse genetic lesions present in individuals with ASD.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Mutação , Obesidade Infantil/genética , Adolescente , Transtorno do Espectro Autista/psicologia , Criança , Pré-Escolar , Bases de Dados Genéticas , Feminino , Testes Genéticos , Humanos , Testes de Inteligência , Masculino , Obesidade Infantil/psicologia , Habilidades Sociais
6.
Mol Genet Metab ; 123(4): 511-517, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29506955

RESUMO

Excess fat mass is a cardinal feature of Prader-Willi syndrome (PWS) that is recapitulated in the Magel2-null mouse model of this genetic disorder. There is a pressing need for drugs that can prevent or treat obesity in children with PWS. Recently, a clinical study of a controlled release form of the benzothiadiazine derivative diazoxide demonstrated improved metabolic parameters and decreased fat mass in obese children and adults with PWS. We tested whether chronic diazoxide administration can reduce fat mass and improve metabolism in mice lacking MAGEL2, a gene inactivated in PWS. Magel2-null and wild-type control mice were rendered obese by high fat diet feeding, then provided diazoxide while being maintained on a high fat diet. Treatment of obese mice with diazoxide reduced weight and body fat, lowered blood glucose and improved endurance capacity. Treatment with diazoxide partially normalizes obesity in children and adults with PWS and in a PWS mouse model, demonstrating that the biological pathways impacted by diazoxide may be rational pharmacological targets in PWS and other disorders diseases associated with obesity.


Assuntos
Antígenos de Neoplasias/fisiologia , Distribuição da Gordura Corporal , Diazóxido/farmacologia , Modelos Animais de Doenças , Obesidade/fisiopatologia , Resistência Física , Síndrome de Prader-Willi/tratamento farmacológico , Proteínas/fisiologia , Animais , Anti-Hipertensivos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Condicionamento Físico Animal , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia
7.
Hum Mol Genet ; 24(15): 4276-83, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25926624

RESUMO

Prader-Willi syndrome (PWS) is a multigene disorder associated with neonatal failure to thrive, developmental delay and endocrine abnormalities suggestive of hypothalamic dysfunction. Children with PWS typically develop overt hyperphagia and obesity ∼8 years of age, later than children with other genetic forms of obesity. This suggests a postnatal developmental or degenerative component to PWS-associated obesity. De novo inactivating mutations in one PWS candidate gene, MAGEL2, have been identified in children with features of PWS. Adult mice lacking Magel2 are insensitive to the anorexic effect of leptin treatment, and their hypothalamic pro-opiomelanocortin (POMC) neurons fail to depolarize in response to leptin. However, it is unclear whether this leptin insensitivity is congenital, or whether normal leptin sensitivity in neonatal Magel2-null mice is lost postnatally. We used in vitro cytosolic calcium imaging to follow the postnatal development of leptin responses in POMC neurons in these mice. Leptin caused an activation of POMC neurons in wild-type acute hypothalamic slice preparations at all ages, reflecting their normal leptin-invoked depolarization. Normal leptin responses were found in Magel2-null mice up to 4 weeks of age, but the proportion of leptin-responsive POMC neurons was reduced in 6-week-old Magel2-null mice. The number of α-melanocyte-stimulating hormone immunoreactive fibers in the paraventricular hypothalamic nucleus was also reduced in mutant mice at 6 weeks of age. A similar progressive loss of leptin sensitivity caused by loss of MAGEL2 in children with PWS could explain the delayed onset of increased appetite and weight gain in this complex disorder.


Assuntos
Antígenos de Neoplasias/genética , Leptina/metabolismo , Neurônios/metabolismo , Síndrome de Prader-Willi/genética , Proteínas/genética , Animais , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Modelos Animais de Doenças , Humanos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Hipotálamo/patologia , Leptina/administração & dosagem , Camundongos , Neurônios/patologia , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patologia , Pró-Opiomelanocortina/metabolismo , Aumento de Peso/genética
8.
PLoS Genet ; 9(1): e1003207, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341784

RESUMO

Prader-Willi Syndrome is the most common syndromic form of human obesity and is caused by the loss of function of several genes, including MAGEL2. Mice lacking Magel2 display increased weight gain with excess adiposity and other defects suggestive of hypothalamic deficiency. We demonstrate Magel2-null mice are insensitive to the anorexic effect of peripherally administered leptin. Although their excessive adiposity and hyperleptinemia likely contribute to this physiological leptin resistance, we hypothesized that Magel2 may also have an essential role in intracellular leptin responses in hypothalamic neurons. We therefore measured neuronal activation by immunohistochemistry on brain sections from leptin-injected mice and found a reduced number of arcuate nucleus neurons activated after leptin injection in the Magel2-null animals, suggesting that most but not all leptin receptor-expressing neurons retain leptin sensitivity despite hyperleptinemia. Electrophysiological measurements of arcuate nucleus neurons expressing the leptin receptor demonstrated that although neurons exhibiting hyperpolarizing responses to leptin are present in normal numbers, there were no neurons exhibiting depolarizing responses to leptin in the mutant mice. Additional studies demonstrate that arcuate nucleus pro-opiomelanocortin (POMC) expressing neurons are unresponsive to leptin. Interestingly, Magel2-null mice are hypersensitive to the anorexigenic effects of the melanocortin receptor agonist MT-II. In Prader-Willi Syndrome, loss of MAGEL2 may likewise abolish leptin responses in POMC hypothalamic neurons. This neural defect, together with increased fat mass, blunted circadian rhythm, and growth hormone response pathway defects that are also linked to loss of MAGEL2, could contribute to the hyperphagia and obesity that are hallmarks of this disorder.


Assuntos
Antígenos de Neoplasias , Leptina , Neurônios , Síndrome de Prader-Willi , Pró-Opiomelanocortina , Proteínas , Adiposidade/genética , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Ritmo Circadiano/genética , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Leptina/administração & dosagem , Leptina/metabolismo , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/genética , Obesidade/metabolismo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptores para Leptina/metabolismo , Aumento de Peso/efeitos dos fármacos
9.
PLoS Genet ; 9(9): e1003752, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039599

RESUMO

Genomic imprinting is a process that causes genes to be expressed from one allele only according to parental origin, the other allele being silent. Diseases can arise when the normally active alleles are not expressed. In this context, low level of expression of the normally silent alleles has been considered as genetic noise although such expression has never been further studied. Prader-Willi Syndrome (PWS) is a neurodevelopmental disease involving imprinted genes, including NDN, which are only expressed from the paternally inherited allele, with the maternally inherited allele silent. We present the first in-depth study of the low expression of a normally silent imprinted allele, in pathological context. Using a variety of qualitative and quantitative approaches and comparing wild-type, heterozygous and homozygous mice deleted for Ndn, we show that, in absence of the paternal Ndn allele, the maternal Ndn allele is expressed at an extremely low level with a high degree of non-genetic heterogeneity. The level of this expression is sex-dependent and shows transgenerational epigenetic inheritance. In about 50% of mutant mice, this expression reduces birth lethality and severity of the breathing deficiency, correlated with a reduction in the loss of serotonergic neurons. In wild-type brains, the maternal Ndn allele is never expressed. However, using several mouse models, we reveal a competition between non-imprinted Ndn promoters which results in monoallelic (paternal or maternal) Ndn expression, suggesting that Ndn allelic exclusion occurs in the absence of imprinting regulation. Importantly, specific expression of the maternal NDN allele is also detected in post-mortem brain samples of PWS individuals. Our data reveal an unexpected epigenetic flexibility of PWS imprinted genes that could be exploited to reactivate the functional but dormant maternal alleles in PWS. Overall our results reveal high non-genetic heterogeneity between genetically identical individuals that might underlie the variability of the phenotype.


Assuntos
Epigênese Genética/genética , Impressão Genômica , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Síndrome de Prader-Willi/genética , Alelos , Animais , Apneia/genética , Apneia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Prader-Willi/patologia , Regiões Promotoras Genéticas
10.
Blood ; 120(8): 1601-12, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22776820

RESUMO

We recently defined a critical role for p53 in regulating the quiescence of adult hematopoietic stem cells (HSCs) and identified necdin as a candidate p53 target gene. Necdin is a growth-suppressing protein and the gene encoding it is one of several that are deleted in patients with Prader-Willi syndrome. To define the intrinsic role of necdin in adult hematopoiesis, in the present study, we transplanted necdin-null fetal liver cells into lethally irradiated recipients. We show that necdin-null adult HSCs are less quiescent and more proliferative than normal HSCs, demonstrating the similar role of necdin and p53 in promoting HSC quiescence during steady-state conditions. However, wild-type recipients repopulated with necdin-null hematopoietic stem/progenitor cells show enhanced sensitivity to irradiation and chemotherapy, with increased p53-dependent apoptosis, myelosuppression, and mortality. Necdin controls the HSC response to genotoxic stress via both cell-cycle-dependent and cell-cycle-independent mechanisms, with the latter occurring in a Gas2L3-dependent manner. We conclude that necdin functions as a molecular switch in adult hematopoiesis, acting in a p53-like manner to promote HSC quiescence in the steady state, but suppressing p53-dependent apoptosis in response to genotoxic stress.


Assuntos
Dano ao DNA , Hematopoese , Células-Tronco Hematopoéticas/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Tratamento Farmacológico , Deleção de Genes , Genes p53 , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Fígado/citologia , Fígado/embriologia , Camundongos , Camundongos Endogâmicos C57BL
11.
Mamm Genome ; 24(5-6): 165-78, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23609791

RESUMO

Prader-Willi syndrome (PWS) occurs in about 1 in 15,000 individuals and is a contiguous gene disorder causing developmental disability, hyperphagia usually with obesity, and behavioral problems, including an increased incidence of psychiatric illness. The genomic imprinting that regulates allele-specific expression of PWS candidate genes, the fact that multiple genes are typically inactivated, and the presence of many genes that produce functional RNAs rather than proteins has complicated the identification of the underlying genetic pathophysiology of PWS. Over 30 genetically modified mouse strains that have been developed and characterized have been instrumental in elucidating the genetic and epigenetic mechanisms for the regulation of PWS genes and in discovering their physiological functions. In 2011, a PWS Animal Models Working Group (AMWG) was established to generate discussions and facilitate exchange of ideas regarding the best use of PWS animal models. Here, we summarize the goals of the AMWG, describe current animal models of PWS, and make recommendations for strategies to maximize the utility of animal models and for the development and use of new animal models of PWS.


Assuntos
Modelos Animais de Doenças , Camundongos , Síndrome de Prader-Willi/genética , Animais , Humanos , Camundongos/genética , Camundongos/metabolismo , Síndrome de Prader-Willi/metabolismo
12.
Am J Physiol Cell Physiol ; 303(12): C1278-91, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23076790

RESUMO

The effect of claudins on paracellular fluxes has been predominantly studied in either Madin-Darby canine kidney (MDCK) or LLCPK cells. Neither model system has a very low transepithelial resistance (TER) as observed in leaky epithelia. Moreover, results from one model system are not always consistent with another. Opossum kidney (OK) cells form tight junctions yet have a very low TER. We therefore set out to characterize the paracellular transport properties of this cell culture model. Ussing chamber dilution potential measurements revealed that OK cells exhibit a very low TER (11.7 ± 1.4 Ω·cm(2)), slight cation selectivity (P(Na)/P(Cl) = 1.10 ± 0.01), and the Eisenman permeability sequence IV; the permeability of monovalent cations ranking K(+) > Cs(+) > Rb(+) > Na(+) > Li(+). Quantitative real-time PCR studies found that OK cells endogenously express claudin-4 > -1 > -6 > -20 > -9 > -12 > -11 > -15. Overexpression of claudin-4 significantly increased TER, decreased Na(+) and Cl(-) permeability, and increased levels of claudin-1, -6, and -9 mRNA. Knockdown of claudin-4 in the overexpressing cells significantly decreased TER without altering claudin expression; thus claudin-4 forms a barrier in OK cells. Knockdown of endogenous claudin-4 decreased claudin-1, -9, and -12 expression without altering TER. Claudin-2 overexpression decreased TER, significantly increased Na(+) and Cl(-) permeability, and decreased claudin-12 and -6 expression. Together these results demonstrate that claudin expression is tightly coupled in OK cells.


Assuntos
Claudina-4/biossíntese , Células Epiteliais/metabolismo , Rim/metabolismo , Animais , Cátions Monovalentes/metabolismo , Células Cultivadas , Claudina-4/genética , Claudinas/biossíntese , Cães , Inativação Gênica , Gambás , Permeabilidade , Junções Íntimas/metabolismo
13.
Mol Ther Methods Clin Dev ; 27: 131-148, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36284766

RESUMO

Individuals with Prader-Willi syndrome (PWS) display developmental delays, cognitive impairment, excessive hunger, obesity, and various behavioral abnormalities. Current PWS treatments are limited to strict supervision of food intake and growth hormone therapy, highlighting the need for new therapeutic strategies. Brain-derived neurotrophic factor (BDNF) functions downstream of hypothalamic feeding circuitry and has roles in energy homeostasis and behavior. In this preclinical study, we assessed the translational potential of hypothalamic adeno-associated virus (AAV)-BDNF gene therapy as a therapeutic for metabolic dysfunction in the Magel2-null mouse model of PWS. To facilitate clinical translation, our BDNF vector included an autoregulatory element allowing for transgene titration in response to the host's physiological needs. Hypothalamic BDNF gene transfer prevented weight gain, decreased fat mass, increased lean mass, and increased relative energy expenditure in female Magel2-null mice. Moreover, BDNF gene therapy improved glucose metabolism, insulin sensitivity, and circulating adipokine levels. Metabolic improvements were maintained through 23 weeks with no adverse behavioral effects, indicating high levels of efficacy and safety. Male Magel2-null mice also responded positively to BDNF gene therapy, displaying improved body composition, insulin sensitivity, and glucose metabolism. Together, these data suggest that regulating hypothalamic BDNF could be effective in the treatment of PWS-related metabolic abnormalities.

14.
Hum Mol Genet ; 18(2): 248-60, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18930956

RESUMO

Prader-Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Prader-Willi/metabolismo , Animais , Linhagem Celular , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Proteínas Nucleares/genética , Síndrome de Prader-Willi/embriologia , Síndrome de Prader-Willi/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
15.
J Circadian Rhythms ; 9(1): 12, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22208286

RESUMO

BACKGROUND: The Magel2 gene is most highly expressed in the suprachiasmatic nucleus of the hypothalamus, where its expression cycles in a circadian pattern comparable to that of clock-controlled genes. Mice lacking the Magel2 gene have hypothalamic dysfunction, including circadian defects that include reduced and fragmented total activity, excessive activity during the subjective day, but they have a normal circadian period. Magel2 is a member of the MAGE family of proteins that have various roles in cellular function, but the specific function of Magel2 is unknown. METHODS: We used a variety of cell-based assays to determine whether Magel2 modifies the properties of core circadian rhythm proteins. RESULTS: Magel2 represses the activity of the Clock:Bmal1 heterodimer in a Per2-luciferase assay. Magel2 interacts with Bmal1 and with Per2 as measured by co-immunoprecipitation in co-transfected cells, and exhibits a subcellular distribution consistent with these interactions when visualized by immunofluorescence. As well, Magel2 induces the redistribution of the subcellular localization of Clock towards the cytoplasm, in contrast to the nucleus-directed effect of Bmal1 on Clock subcellular localization. CONCLUSION: Consistent with the blunted circadian rhythm observed in Magel2-null mice, these data suggest that Magel2 normally promotes negative feedback regulation of the cellular circadian cycle, through interactions with key core circadian rhythm proteins.

16.
Genesis ; 48(9): 540-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20665884

RESUMO

NDN is one of several genes inactivated in Prader-Willi syndrome (PWS), a developmental disorder characterized by obesity, hypotonia, and developmental delay. We demonstrate that loss of Necdin in murine and human fibroblasts impairs polarity initiation through a Cdc42-myosin-dependent pathway, thereby reducing cell migration. We identified defective polarization in both primary neuron cultures and in the developing limb in Ndn-null mice. Ndn-null neurons fail to activate myosin light chain and display defective polarization with respect to a brain-derived neurotrophic factor gradient. Pax3+ muscle progenitors in Ndn-null developing forelimbs display defective polarization, do not adequately migrate into the dorsal limb bud, and extensor muscles are consequently smaller. These results provide strong evidence that Necdin is a key protein regulating polarization of the cytoskeleton during development. Furthermore, this is the first demonstration of a cellular defect in PWS and suggests a novel molecular mechanism to explain neurological and muscular pathophysiologies in PWS.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Citoesqueleto/fisiologia , Proteínas do Tecido Nervoso/deficiência , Proteínas Nucleares/deficiência , Síndrome de Prader-Willi/fisiopatologia , Transdução de Sinais/fisiologia , Animais , Fibroblastos , Humanos , Immunoblotting , Imuno-Histoquímica , Botões de Extremidades/fisiologia , Camundongos , Miosinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Fosforilação , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Transdução de Sinais/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
17.
Physiol Behav ; 219: 112864, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32156555

RESUMO

Prader-Willi syndrome (PWS) is a rare genetic form of hyperphagia leading to severe obesity, accompanied by endocrine, musculoskeletal, and neurological dysfunction. PWS is caused by the inactivation of contiguous genes on chromosome 15q11-q13, and mice with gene-targeted mutations in one or more of these PWS genes recapitulate PWS-like phenotypes. In addition to evaluating the potential effectiveness of a therapeutic for the treatment of PWS, animal models can be used to elucidate the deficiencies in appetitive and energy balance pathways that lead to hyperphagia and obesity. Various therapeutics have been tested for their effects on ingestive behavior, hyperphagia, and obesity in clinical trials for PWS, with encouraging preliminary results on small groups of participants with PWS. Here, we summarize ingestive behavior-related therapeutics tested in PWS animal models and summarize published data from clinical trials that have evaluated the effect of therapeutics on ingestive behavior in individuals with PWS. We then discuss strategies to accelerate the discovery and translation of therapies into clinical practice in PWS.


Assuntos
Síndrome de Prader-Willi , Animais , Grelina , Hiperfagia , Camundongos , Obesidade , Fenótipo , Síndrome de Prader-Willi/genética
18.
PLoS One ; 15(4): e0230874, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315313

RESUMO

MAGEL2 encodes the L2 member of the MAGE (melanoma antigen) protein family. Protein truncating mutations in MAGEL2 cause Schaaf-Yang syndrome, and MAGEL2 is one of a small set of genes deleted in Prader-Willi syndrome. Excessive daytime sleepiness, night-time or early morning waking, and narcoleptic symptoms are seen in people with Prader-Willi syndrome and Schaaf-Yang syndrome, while mice carrying a gene-targeted Magel2 deletion have disrupted circadian rhythms. These phenotypes suggest that MAGEL2 is important for the robustness of the circadian rhythm. However, a cellular role for MAGEL2 has yet to be elucidated. MAGEL2 influences the ubiquitination of substrate proteins to target them for further modification or to alter their stability through proteasomal degradation pathways. Here, we characterized relationships among MAGEL2 and proteins that regulate circadian rhythm. The effect of MAGEL2 on the key circadian rhythm protein cryptochrome 1 (CRY1) was assessed using in vivo proximity labelling (BioID), immunofluorescence microscopy and ubiquitination assays. We demonstrate that MAGEL2 modulates the ubiquitination of CRY1. Further studies will clarify the cellular role MAGEL2 normally plays in circadian rhythm, in part through ubiquitination and regulation of stability of the CRY1 protein.


Assuntos
Antígenos de Neoplasias/metabolismo , Ritmo Circadiano , Criptocromos/metabolismo , Enzimas Desubiquitinantes/metabolismo , Proteínas/metabolismo , Ubiquitinação , Animais , Camundongos , Peptidase 7 Específica de Ubiquitina/metabolismo
19.
Nat Neurosci ; 23(9): 1102-1110, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661395

RESUMO

Cerebellar dysfunction has been demonstrated in autism spectrum disorders (ASDs); however, the circuits underlying cerebellar contributions to ASD-relevant behaviors remain unknown. In this study, we demonstrated functional connectivity between the cerebellum and the medial prefrontal cortex (mPFC) in mice; showed that the mPFC mediates cerebellum-regulated social and repetitive/inflexible behaviors; and showed disruptions in connectivity between these regions in multiple mouse models of ASD-linked genes and in individuals with ASD. We delineated a circuit from cerebellar cortical areas Right crus 1 (Rcrus1) and posterior vermis through the cerebellar nuclei and ventromedial thalamus and culminating in the mPFC. Modulation of this circuit induced social deficits and repetitive behaviors, whereas activation of Purkinje cells (PCs) in Rcrus1 and posterior vermis improved social preference impairments and repetitive/inflexible behaviors, respectively, in male PC-Tsc1 mutant mice. These data raise the possibility that these circuits might provide neuromodulatory targets for the treatment of ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Cerebelo/fisiopatologia , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Mutantes
20.
Differentiation ; 76(9): 994-1005, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18557765

RESUMO

Proliferation and differentiation of muscle precursors are controlled by the activation of muscle-specific genes and inactivation of inhibitors of differentiation. Necdin is a multi-functional protein that is up-regulated during neural and myogenic differentiation. Necdin facilitates cell cycle exit and differentiation during development, but the role of necdin in embryonic myogenesis has not been described. In a cytoplasmic two-hybrid screen, we identified a novel interaction between necdin and the E1A-like inhibitor of differentiation (EID-1). EID-1 inhibits transcriptional activation of genes required for myogenic differentiation, and is degraded in myoblasts upon cell cycle exit. In a transactivation assay, necdin had no direct effect on myoD-responsive promoters in the presence of MyoD, but necdin did relieve the EID-1-dependent inhibition of these same promoters. In vivo, a normal number of MyoD-expressing myoblasts was present in primary embryonic limb bud cultures from mouse embryos with congenital necdin deficiency. In contrast, the number of myosin heavy chain-expressing myotubes in differentiating limb bud cultures cultured for 5 days was reduced compared with cultures from wild-type littermate controls. In the presence of necdin, steady-state levels of EID-1 were increased and the half-life of EID-1 was extended, and EID-1 was re-localized from the nucleus to the cytoplasm when necdin was co-expressed in transfected cells. Collectively, these data are consistent with a model whereby necdin promotes myoblast differentiation at least in part by relieving the inhibitory effect of EID-1.


Assuntos
Diferenciação Celular , Mioblastos/citologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Embrião de Mamíferos/metabolismo , Imunofluorescência , Humanos , Camundongos , Camundongos Transgênicos , Mioblastos/metabolismo , Proteínas Nucleares/genética , Síndrome de Prader-Willi/metabolismo , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA