Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37960502

RESUMO

Thin-film photodiodes (TFPD) monolithically integrated on the Si Read-Out Integrated Circuitry (ROIC) are promising imaging platforms when beyond-silicon optoelectronic properties are required. Although TFPD device performance has improved significantly, the pixel development has been limited in terms of noise characteristics compared to the Si-based image sensors. Here, a thin-film-based pinned photodiode (TF-PPD) structure is presented, showing reduced kTC noise and dark current, accompanied with a high conversion gain (CG). Indium-gallium-zinc oxide (IGZO) thin-film transistors and quantum dot photodiodes are integrated sequentially on the Si ROIC in a fully monolithic scheme with the introduction of photogate (PG) to achieve PPD operation. This PG brings not only a low noise performance, but also a high full well capacity (FWC) coming from the large capacitance of its metal-oxide-semiconductor (MOS). Hence, the FWC of the pixel is boosted up to 1.37 Me- with a 5 µm pixel pitch, which is 8.3 times larger than the FWC that the TFPD junction capacitor can store. This large FWC, along with the inherent low noise characteristics of the TF-PPD, leads to the three-digit dynamic range (DR) of 100.2 dB. Unlike a Si-based PG pixel, dark current contribution from the depleted semiconductor interfaces is limited, thanks to the wide energy band gap of the IGZO channel material used in this work. We expect that this novel 4 T pixel architecture can accelerate the deployment of monolithic TFPD imaging technology, as it has worked for CMOS Image sensors (CIS).

2.
Int J Urol ; 27(6): 543-550, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266758

RESUMO

OBJECTIVES: To test the hypothesis that an implantable sensing system containing accelerometers can detect small-scale autonomous movements, also termed micromotions, which might be relevant to bladder physiology. METHODS: We developed a 6-mm submucosal implant containing a pressure sensor (MS5637) and a triaxial accelerometer (BMA280). Sensor prototypes were tested by implantation in the bladders of Gottingen minipigs. Repeated awake voiding cystometry was carried out with air-charged catheters in a standard urodynamic set-up as comparators. We identified four phases of voiding similar to cystometry in other animal models based on submucosal pressure. Acceleration signals were separated by frequency characteristics to isolate linear acceleration from the baseline acceleration. The total linear acceleration was calculated by the root mean square of the three measurement axes. Acceleration activity during voiding was investigated to adjacent 1-s windows and was compared with the registered pressure. RESULTS: We observed a total of 19 consecutive voids in five measurement sessions. A good correlation (r > 0.75) was observed between submucosal and catheter pressure in 14 of 19 premicturition traces. The peak-to-peak interval between maximum total linear acceleration was correlated with the interval between submucosal voiding pressure peaks (r = 0.760, P < 0.001). The total linear acceleration was higher during voiding compared with pre- and postmicturition periods (start of voiding/phase 1). CONCLUSIONS: To the best of our knowledge, this is the first report of bladder wall acceleration, a novel metric that reflects bladder wall movement. Submucosal sensors containing accelerometers can measure bladder pressure and acceleration.


Assuntos
Bexiga Urinária , Urodinâmica , Aceleração , Animais , Catéteres , Suínos , Porco Miniatura
3.
Biomed Microdevices ; 19(3): 52, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28597392

RESUMO

Acceleration signals, collected from the inner and the outer heart wall, offer a mean of assessing cardiac function during surgery. Accelerometric measurements can also provide detailed insights into myocardial motion during exploratory investigations. Two different implantable accelerometers to respectively record endocardial and epicardial vibrations, have been developed by packaging a commercially available capacitive transducer. The same coating materials have been deposited on the two devices to ensure biocompatibility of the implants: Parylene-C, medical epoxy and Polydimethylsiloxane (PDMS). The different position-specific requirements resulted in two very dissimilar sensor assemblies. The endocardial accelerometer, that measures accelerations from the inner surface of the heart during acute animal tests, is a 2 mm-radius hemisphere fixed on a polymethyl methacrylate (PMMA) rod to be inserted through the heart wall. The epicardial accelerometer, that monitors the motion of the outer surface of the heart, is a three-legged structure with a stretchable polytetrafluoroethylene (PTFE) reinforcement. This device can follow the continuous motion of the myocardium (the muscular tissue of the heart) during the cardiac cycle, without hindering its natural movement. Leakage currents lower than 1 µA have been measured during two weeks of continuous operation in saline. Both transducers have been used, during animal tests, to simultaneously record and compare acceleration signals from corresponding locations on the inner and the outer heart wall of a female sheep.


Assuntos
Acelerometria , Endocárdio/fisiologia , Pericárdio/fisiologia , Acelerometria/instrumentação , Acelerometria/métodos , Animais , Dimetilpolisiloxanos/química , Feminino , Polímeros/química , Polimetil Metacrilato/química , Ovinos , Xilenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA