Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 119(6): 1108-1122, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32891187

RESUMO

Phosphorylation of Escherichia coli CheY protein transduces chemoreceptor stimulation to a highly cooperative flagellar motor response. CheY binds to the N-terminal peptide of the FliM motor protein (FliMN). Constitutively active D13K-Y106W CheY has been an important tool for motor physiology. The crystal structures of CheY and CheY ⋅ FliMN with and without D13K-Y106W have shown FliMN-bound CheY contains features of both active and inactive states. We used molecular dynamics (MD) simulations to characterize the CheY conformational landscape accessed by FliMN and D13K-Y106W. Mutual information measures identified the central features of the long-range CheY allosteric network between D57 phosphorylation site and the FliMN interface, namely the closure of the α4-ß4 hinge and inward rotation of Y- or W106 with W58. We used hydroxy-radical foot printing with mass spectroscopy (XFMS) to track the solvent accessibility of these and other side chains. The solution XFMS oxidation rate correlated with the solvent-accessible area of the crystal structures. The protection of allosteric relay side chains reported by XFMS confirmed the intermediate conformation of the native CheY ⋅ FliMN complex, the inactive state of free D13K-Y106W CheY, and the MD-based network architecture. We extended the MD analysis to determine temporal coupling and energetics during activation. Coupled aromatic residue rotation was a graded rather than a binary switch, with Y- or W106 side-chain burial correlated with increased FliMN affinity. Activation entrained CheY fold stabilization to FliMN affinity. The CheY network could be partitioned into four dynamically coordinated sectors. Residue substitutions mapped to sectors around D57 or the FliMN interface according to phenotype. FliMN increased sector size and interactions. These sectors fused between the substituted K13-W106 residues to organize a tightly packed core and novel surfaces that may bind additional sites to explain the cooperative motor response. The community maps provide a more complete description of CheY priming than proposed thus far.


Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/metabolismo , Quimiotaxia , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Fosforilação , Ligação Proteica
2.
Mol Microbiol ; 104(2): 234-249, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28106310

RESUMO

The bacterial flagellum contains a specialized secretion apparatus in its base that pumps certain protein subunits through the growing structure to their sites of installation beyond the membrane. A related apparatus functions in the injectisomes of gram-negative pathogens to export virulence factors into host cells. This mode of protein export is termed type-III secretion (T3S). Details of the T3S mechanism are unclear. It is energized by the proton gradient; here, a mutational approach was used to identify proton-binding groups that might function in transport. Conserved proton-binding residues in all the membrane components were tested. The results identify residues R147, R154 and D158 of FlhA as most critical. These lie in a small, well-conserved cytoplasmic domain of FlhA, located between transmembrane segments 4 and 5. Two-hybrid experiments demonstrate self-interaction of the domain, and targeted cross-linking indicates that it forms a multimeric array. A mutation that mimics protonation of the key acidic residue (D158N) was shown to trigger a global conformational change that affects the other, larger cytoplasmic domain that interacts with the export cargo. The results are discussed in the framework of a transport model based on proton-actuated movements in the cytoplasmic domains of FlhA.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Sequência de Aminoácidos , Flagelos/metabolismo , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Relação Estrutura-Atividade , Sistemas de Secreção Tipo III/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA