Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant Cell ; 36(5): 1622-1636, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113879

RESUMO

Cultivated strawberry (Fragaria × ananassa) has a brief history of less than 300 yr, beginning with the hybridization of octoploids Fragaria chiloensis and Fragaria virginiana. Here we explored the genomic signatures of early domestication and subsequent diversification for different climates using whole-genome sequences of 289 wild, heirloom, and modern varieties from two major breeding programs in the United States. Four nonadmixed wild octoploid populations were identified, with recurrent introgression among the sympatric populations. The proportion of F. virginiana ancestry increased by 20% in modern varieties over initial hybrids, and the proportion of F. chiloensis subsp. pacifica rose from 0% to 3.4%. Effective population size rapidly declined during early breeding. Meanwhile, divergent selection for distinct environments reshaped wild allelic origins in 21 out of 28 chromosomes. Overlapping divergent selective sweeps in natural and domesticated populations revealed 16 convergent genomic signatures that may be important for climatic adaptation. Despite 20 breeding cycles since initial hybridization, more than half of loci underlying yield and fruit size are still not under artificial selection. These insights add clarity to the domestication and breeding history of what is now the most widely cultivated fruit in the world.


Assuntos
Domesticação , Fragaria , Genoma de Planta , Fragaria/genética , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Hibridização Genética , Variação Genética , Genômica/métodos , Seleção Genética
2.
Plant Cell ; 32(12): 3723-3749, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33004617

RESUMO

The fruits of diploid and octoploid strawberry (Fragaria spp) show substantial natural variation in color due to distinct anthocyanin accumulation and distribution patterns. Anthocyanin biosynthesis is controlled by a clade of R2R3 MYB transcription factors, among which MYB10 is the main activator in strawberry fruit. Here, we show that mutations in MYB10 cause most of the variation in anthocyanin accumulation and distribution observed in diploid woodland strawberry (F. vesca) and octoploid cultivated strawberry (F ×ananassa). Using a mapping-by-sequencing approach, we identified a gypsy-transposon in MYB10 that truncates the protein and knocks out anthocyanin biosynthesis in a white-fruited F. vesca ecotype. Two additional loss-of-function mutations in MYB10 were identified among geographically diverse white-fruited F. vesca ecotypes. Genetic and transcriptomic analyses of octoploid Fragaria spp revealed that FaMYB10-2, one of three MYB10 homoeologs identified, regulates anthocyanin biosynthesis in developing fruit. Furthermore, independent mutations in MYB10-2 are the underlying cause of natural variation in fruit skin and flesh color in octoploid strawberry. We identified a CACTA-like transposon (FaEnSpm-2) insertion in the MYB10-2 promoter of red-fleshed accessions that was associated with enhanced expression. Our findings suggest that cis-regulatory elements in FaEnSpm-2 are responsible for enhanced MYB10-2 expression and anthocyanin biosynthesis in strawberry fruit flesh.


Assuntos
Antocianinas/metabolismo , Fragaria/genética , Variação Genética , Proteínas de Plantas/metabolismo , Alelos , Diploide , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Poliploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Dis ; 107(3): 651-657, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35801901

RESUMO

Phytophthora crown rot (PhCR) is an important disease of strawberry worldwide. Phytophthora cactorum is the most common causal agent, however, P. nicotianae was also recently reported causing PhCR in the U.S. Therefore, the goals of this study were to evaluate the resistance of strawberry cultivars from Florida and California, and to study the etiology of the two Phytophthora species causing PhCR. Sixteen strawberry cultivars were evaluated over three Florida seasons for susceptibility to P. cactorum, and P. nicotianae. Inoculations at different days after transplanting (DAT) were also carried out to evaluate the ability of both species to cause PhCR at different phenological stages of the plant. Plant wilting and mortality were assessed weekly, and disease incidence, and the area under the disease progress curve were calculated. Cultivars Sensation 'Florida127', 'Winterstar FL 05-107', and 'Florida Radiance' were susceptible, whereas 'Florida Elyana', 'Camarosa', 'Fronteras', 'Sweet Charlie', and 'Strawberry Festival' were highly resistant to both Phytophthora species. However, some cultivars exhibited stronger resistance to one species over the other. P. cactorum caused more PhCR when plants were inoculated at transplanting, 45, and 60 DAT, whereas P. nicotianae only caused disease when inoculated at transplanting. These results emphasize the importance of screening for disease resistance to guide management recommendations in commercial strawberry production as well as the need for proper pathogen identification since cultivar susceptibility might differ. Varying susceptibility to P. cactorum and P. nicotianae at different growth stages emphasizes the importance of considering both plant and pathogen biology when making management recommendations.


Assuntos
Fragaria , Phytophthora , Doenças das Plantas , Florida
4.
Mol Biol Evol ; 38(6): 2285-2305, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33507311

RESUMO

Cultivated strawberry (Fragaria × ananassa) is one of our youngest domesticates, originating in early eighteenth-century Europe from spontaneous hybrids between wild allo-octoploid species (Fragaria chiloensis and Fragaria virginiana). The improvement of horticultural traits by 300 years of breeding has enabled the global expansion of strawberry production. Here, we describe the genomic history of strawberry domestication from the earliest hybrids to modern cultivars. We observed a significant increase in heterozygosity among interspecific hybrids and a decrease in heterozygosity among domesticated descendants of those hybrids. Selective sweeps were found across the genome in early and modern phases of domestication-59-76% of the selectively swept genes originated in the three less dominant ancestral subgenomes. Contrary to the tenet that genetic diversity is limited in cultivated strawberry, we found that the octoploid species harbor massive allelic diversity and that F. × ananassa harbors as much allelic diversity as either wild founder. We identified 41.8 M subgenome-specific DNA variants among resequenced wild and domesticated individuals. Strikingly, 98% of common alleles and 73% of total alleles were shared between wild and domesticated populations. Moreover, genome-wide estimates of nucleotide diversity were virtually identical in F. chiloensis,F. virginiana, and F. × ananassa (π = 0.0059-0.0060). We found, however, that nucleotide diversity and heterozygosity were significantly lower in modern F. × ananassa populations that have experienced significant genetic gains and have produced numerous agriculturally important cultivars.


Assuntos
Domesticação , Fragaria/genética , Variação Genética , Genoma de Planta , Hibridização Genética , Cromossomos de Plantas , Desequilíbrio de Ligação , Poliploidia , Seleção Genética
5.
New Phytol ; 236(3): 1089-1107, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35916073

RESUMO

Flavor is essential to consumer preference of foods and is an increasing focus of plant breeding programs. In fruit crops, identifying genes underlying volatile organic compounds has great promise to accelerate flavor improvement, but polyploidy and heterozygosity in many species have slowed progress. Here we use octoploid cultivated strawberry to demonstrate how genomic heterozygosity, transcriptomic intricacy and fruit metabolomic diversity can be treated as strengths and leveraged to uncover fruit flavor genes and their regulatory elements. Multi-omics datasets were generated including an expression quantitative trait loci map with 196 diverse breeding lines, haplotype-phased genomes of a highly-flavored breeding selection, a genome-wide structural variant map using five haplotypes, and volatile genome-wide association study (GWAS) with > 300 individuals. Overlaying regulatory elements, structural variants and GWAS-linked allele-specific expression of numerous genes to variation in volatile compounds important to flavor. In one example, the functional role of anthranilate synthase alpha subunit 1 in methyl anthranilate biosynthesis was supported via fruit transient gene expression assays. These results demonstrate a framework for flavor gene discovery in fruit crops and a pathway to molecular breeding of cultivars with complex and desirable flavor.


Assuntos
Fragaria , Compostos Orgânicos Voláteis , Antranilato Sintase/metabolismo , Fragaria/genética , Frutas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Compostos Orgânicos Voláteis/metabolismo
6.
J Exp Bot ; 73(15): 5322-5335, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35383379

RESUMO

High-throughput phenotyping is an emerging approach in plant science, but thus far only a few applications have been made in horticultural crop breeding. Remote sensing of leaf or canopy spectral reflectance can help breeders rapidly measure traits, increase selection accuracy, and thereby improve response to selection. In the present study, we evaluated the integration of spectral analysis of canopy reflectance and genomic information for the prediction of strawberry (Fragaria × ananassa) powdery mildew disease. Two multi-parental breeding populations of strawberry comprising a total of 340 and 464 pedigree-connected seedlings were evaluated in two separate seasons. A single-trait Bayesian prediction method using 1001 spectral wavebands in the ultraviolet-visible-near infrared region (350-1350 nm wavelength) combined with 8552 single nucleotide polymorphism markers showed up to 2-fold increase in predictive ability over models using markers alone. The integration of high-throughput phenotyping was further validated independently across years/trials with improved response to selection of up to 90%. We also conducted Bayesian multi-trait analysis using the estimated vegetative indices as secondary traits. Three vegetative indices (Datt3, REP_Li, and Vogelmann2) had high genetic correlations (rA) with powdery mildew visual ratings with average rA values of 0.76, 0.71, and 0.71, respectively. Increasing training population sizes by incorporating individuals with only vegetative index information yielded substantial increases in predictive ability. These results strongly indicate the use of vegetative indices as secondary traits for indirect selection. Overall, combining spectrometry and genome-wide prediction improved selection accuracy and response to selection for powdery mildew resistance, demonstrating the power of an integrated phenomics-genomics approach in strawberry breeding.


Assuntos
Fragaria , Teorema de Bayes , Fragaria/genética , Fenótipo , Melhoramento Vegetal , Análise Espectral
7.
Plant Dis ; 105(8): 2071-2077, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33428449

RESUMO

Macrophomina phaseolina, the causal agent of charcoal rot, is a soilborne pathogen that affects strawberry crowns leading to plant wilt and collapse. Disease management involves a combination of physical, cultural, and chemical methods. Field trials were conducted for 10 consecutive Florida seasons (2010-11 to 2019-20) to determine the susceptibility of strawberry cultivars to charcoal rot and the effect of cultivar selection on disease and to estimate the economic impact of cultivar selection on disease management. Six cultivars grown commercially in Florida were chosen and grouped as highly susceptible (HS) ('Strawberry Festival' and 'Treasure'), susceptible (S) ('Florida Radiance' and 'Florida Beauty'), and moderately resistant (MR) (Sensation 'Florida127' and Winterstar 'FL05-107') according to their susceptibility levels. After a primary analysis of the individual trials, a network meta-analysis was conducted to estimate and compare the final disease incidence and the disease progress rate of each susceptibility group. The economic impact of charcoal rot on strawberry production and gross revenue was estimated based on plant production functions, weekly fruit prices, and disease progress over time with parameters obtained via the meta-analytical models. Disease incidence was reduced by 91.5 and 77.3%, respectively, when the MR and S cultivar groups were adopted instead of the HS group. There was a 62.5% reduction in the disease incidence when the MR group was used instead of the S group. Significant differences in disease progress rates were also observed when the MR and S groups were adopted instead of the HS group. Therefore, the adoption of more resistant cultivars is an effective strategy when incorporated into a charcoal rot integrated management program and can significantly impact growers' revenue by reducing disease incidence, preventing yield loss, and, consequently, minimizing economic losses.


Assuntos
Ascomicetos , Fragaria , Florida , Frutas
8.
Theor Appl Genet ; 132(4): 1109-1120, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30564908

RESUMO

Optimal strategies for genetic improvement in crops depend on accurate assessments of the genetic architecture of traits. The overall objective of the present study was to determine the genetic architecture of anthracnose fruit rot (AFR) resistance caused by the fungus Colletotrichum acutatum in the University of Florida strawberry (Fragaria × ananassa) breeding germplasm. In 2016-2017, 33 full-sib families resulting from crosses between parents with varying levels of AFR resistance were tested. In 2017-2018, six full-sib families resulting from putative heterozygous resistant parents and homozygous susceptible parents were tested. Additionally, a validation population consisting of 77 advanced selections and ten cultivars was tested in the second season. Inoculation was performed using a mixture of three local isolates of the C. acutatum species complex. Phenotypes were scored weekly, and genotyping was performed using the IStraw35 Affymetrix Axiom® SNP array. A pedigree-based QTL analysis was performed using FlexQTL™ software. A major resistance locus, which we name FaRCa1, was detected in both seasons with a peak located at 55-56 cM on LG 6B and explaining at least 50% of the phenotypic variation across trials and seasons. The resistant allele exhibited partial dominance in all trials. The FaRCa1 locus is distinct from the previously discovered Rca2 locus, which mapped to LG 7B. While Rca2 is effective against European isolates from pathogenicity group 2, FaRCa1 appears to confer resistance to isolates of pathogenicity group 1.


Assuntos
Colletotrichum/fisiologia , Resistência à Doença/genética , Fragaria/genética , Fragaria/microbiologia , Loci Gênicos , Genoma de Planta , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Mapeamento Cromossômico , Segregação de Cromossomos/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
9.
Theor Appl Genet ; 131(10): 2167-2177, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30032317

RESUMO

Colletotrichum crown rot (CCR) is an important disease of strawberry (Fragaria ×ananassa) throughout the Southeastern US and in subtropical climates around the world, where hot and humid conditions facilitate rapid disease development. Yet no resistance loci have been described to date, as genetic studies have been historically difficult in allo-octoploid (2n = 8x = 56) strawberry. In the present study, we investigate the genetic architecture of resistance to CCR. Four population sets from the University of Florida were inoculated in four different seasons from 2013-2014 to 2016-2017. Two large, multiparental discovery population sets were used for QTL discovery, and two validation sets of cultivars and advanced selections representing the parent pool of the breeding program were also assessed. Subgenome-specific single-nucleotide polymorphism (SNP) markers were mapped, and FlexQTL™ software was utilized to perform a Bayesian, pedigree-based QTL analysis. A quantitative trait locus on linkage group 6B, which we name FaRCg1, accounts for most of the genetic variation for resistance in the discovery sets (26.8-29.8% in 2013-2014 and 17% in 2015-2016). High-throughput marker assays were developed for the most significant SNPs which correlated with the mode of the QTL region. The discovery and characterization of the FaRCg1 locus and the molecular tools developed from it will be utilized to achieve increased genetic gains for resistance.


Assuntos
Colletotrichum/patogenicidade , Resistência à Doença/genética , Fragaria/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fragaria/microbiologia , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Poliploidia
10.
BMC Plant Biol ; 17(1): 147, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28859633

RESUMO

BACKGROUND: Methyl anthranilate (MA) contributes an attractive fruity note to the complex flavor and aroma of strawberry (Fragaria spp.), yet it is rare in modern cultivars. The genetic basis for its biosynthesis has not been elucidated. Understanding the specific genes required for its synthesis could allow  the development of gene/allele-specific molecular markers to speed breeding of flavorful strawberries. RESULTS: Ripe fruits from individuals in an F1 population resulting from a cross between a MA producer and a non-producer were examined using a bulk-segregant transcriptome approach. MA producer and non-producer transcriptomes were compared, revealing five candidate transcripts that strictly co-segregated with MA production. One candidate encodes an annotated methyltransferase. MA levels are lower when this transcript is suppressed with RNAi, and bacterial cultures expressing the protein produced MA in the presence of anthranilic acid. Frozen fruit powders reconstituted with anthranilic acid and a methyl donor produced MA only if the transcript was detected in the fruit powder. A DNA-based molecular marker was developed that segregates with the MA-producing gene variant. CONCLUSIONS: These analyses indicate that the methyltransferase, now noted ANTHRANILIC ACID METHYL TRANSFERASE (FanAAMT), mediates the ultimate step of MA production in cultivated strawberry. Identification of this gene and its associated molecular marker may hasten breeding efforts to introduce this important volatile into modern cultivars.


Assuntos
Fragaria/enzimologia , Metiltransferases/metabolismo , ortoaminobenzoatos/metabolismo , Catálise , Fragaria/genética , Fragaria/metabolismo , Frutas/enzimologia , Expressão Gênica , Perfilação da Expressão Gênica , Genes de Plantas , Estações do Ano
11.
Theor Appl Genet ; 129(6): 1191-201, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26910360

RESUMO

KEY MESSAGE: Angular leaf spot is a devastating bacterial disease of strawberry. Resistance from two wild accessions is highly heritable and controlled by a major locus on linkage group 6D. Angular leaf spot caused by Xanthomonas fragariae is the only major bacterial disease of cultivated strawberry (Fragaria ×ananassa). While this disease may cause reductions of up to 8 % of marketable yield in Florida winter annual production, no resistant cultivars have been commercialized. Wild accessions US4808 and US4809 were previously identified as resistant to the four genetic clades of X. fragariae, and introgression of the trait into commercial quality perennial-type germplasm was initiated. Previous reports indicated high heritability for the trait but proposed both single-locus and multi-locus inheritance models. The objective of this study was to determine the mode of inheritance of resistance, to identify causal loci, and to begin introgression of resistance into Florida-adapted germplasm. Resistance was observed in two years of field trials with inoculated plants that assayed four full-sib families descended from US4808 to US4809. Resistance segregated 1:1 in all families indicating control by a dominant allele at a single locus. Using a selective genotyping approach with the IStraw90 Axiom(®) SNP array and pedigree-based QTL detection, a single major-effect QTL was identified in two full-sib families, one descended from each resistant accession. High-resolution melt curve analysis validated the presence of the QTL in separate populations. The QTL was delimited to the 33.1-33.6 Mbp (F. vesca vesca v1.1 reference) and 34.8-35.3 Mbp (F. vesca bracteata v2.0 reference) regions of linkage group 6D for both resistance sources and was designated FaRXf1. Characterization of this locus will facilitate marker-assisted selection toward the development of resistant cultivars.


Assuntos
Resistência à Doença/genética , Fragaria/genética , Doenças das Plantas/genética , Xanthomonas , Mapeamento Cromossômico , DNA de Plantas/genética , Fragaria/microbiologia , Ligação Genética , Marcadores Genéticos , Genótipo , Haplótipos , Linhagem , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Poliploidia , Locos de Características Quantitativas
12.
J Exp Bot ; 66(15): 4455-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979996

RESUMO

New modulators of the strawberry flavonoid pathway were identified through correlation network analysis. The transcriptomes of red, ripe fruit from two parental lines and 14 of their progeny were compared, and uncharacterized transcripts matching the expression patterns of known flavonoid-pathway genes were identified. Fifteen transcripts corresponded with putative transcription factors, and several of these were examined experimentally using transient expression in developing fruits. The results suggest that two of the newly-identified regulators likely contribute to discrete nodes of the flavonoid pathway. One increases only LEUCOANTHOCYANIDIN REDUCTASE (LAR) and FLAVONOL 3'-HYDROXYLASE (F3'H) transcript accumulation upon overexpression. Another affects LAR and FLAVONOL SYNTHASE (FLS) after overexpression. The third putative transcription factor appears to be a universal regulator of flavonoid-pathway genes, as many pathway transcripts decrease in abundance when this gene is silenced. This report demonstrates that such systems-level approaches may be especially powerful when connected to an effective transient expression system, helping to provide rapid and strong evidence of gene function in key fruit-ripening processes.


Assuntos
Flavonoides/metabolismo , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Flavonoides/genética , Fragaria/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Poliploidia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Plant Dis ; 99(7): 954-961, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30690974

RESUMO

Resistance to Colletotrichum crown rot (CCR, caused by Colletotrichum gloeosporioides) among commercial strawberry cultivars is variable, and increasing host resistance is a goal of the strawberry breeding program at the University of Florida. Twenty-eight accessions of Fragaria virginiana and F. chiloensis, the progenitor species of the cultivated strawberry (F. × ananassa), were evaluated for CCR resistance on artificially inoculated plants in a field trial, along with cultivars and breeding selections. Accessions PI 612320, PI 612323, and PI 551736 and selections FL 10-128 and FL 10-129 had no mortality in either of two seasons. The most susceptible genotypes had mortality between 75 and 100%. In a separate growth-chamber evaluation, seven genotypes were inoculated by spraying a spore suspension onto the crown or by injecting the suspension directly into the crown tissues. Mortality was higher using the injection method but the ranking of the genotypes was similar for both methods, indicating that resistance is expressed within crown tissues. Among the seven genotypes, selections FL 10-128 and FL 10-129 had the lowest mortality regardless of inoculation method, illustrating that a high level of resistance can be found within the cultivated germplasm.

14.
BMC Genomics ; 15: 217, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24742080

RESUMO

BACKGROUND: There is interest in improving the flavor of commercial strawberry (Fragaria × ananassa) varieties. Fruit flavor is shaped by combinations of sugars, acids and volatile compounds. Many efforts seek to use genomics-based strategies to identify genes controlling flavor, and then designing durable molecular markers to follow these genes in breeding populations. In this report, fruit from two cultivars, varying for presence-absence of volatile compounds, along with segregating progeny, were analyzed using GC/MS and RNAseq. Expression data were bulked in silico according to presence/absence of a given volatile compound, in this case γ-decalactone, a compound conferring a peach flavor note to fruits. RESULTS: Computationally sorting reads in segregating progeny based on γ-decalactone presence eliminated transcripts not directly relevant to the volatile, revealing transcripts possibly imparting quantitative contributions. One candidate encodes an omega-6 fatty acid desaturase, an enzyme known to participate in lactone production in fungi, noted here as FaFAD1. This candidate was induced by ripening, was detected in certain harvests, and correlated with γ-decalactone presence. The FaFAD1 gene is present in every genotype where γ-decalactone has been detected, and it was invariably missing in non-producers. A functional, PCR-based molecular marker was developed that cosegregates with the phenotype in F1 and BC1 populations, as well as in many other cultivars and wild Fragaria accessions. CONCLUSIONS: Genetic, genomic and analytical chemistry techniques were combined to identify FaFAD1, a gene likely controlling a key flavor volatile in strawberry. The same data may now be re-sorted based on presence/absence of any other volatile to identify other flavor-affecting candidates, leading to rapid generation of gene-specific markers.


Assuntos
Aromatizantes/análise , Fragaria/genética , Cromatografia Gasosa-Espectrometria de Massas , Genômica , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Genótipo , Lactonas/análise , Repetições de Microssatélites/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
15.
Plant Genome ; 17(2): e20477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822520

RESUMO

Aggressive strains of Neopestalotiopsis sp. have recently emerged as devastating pathogens of strawberry (Fragaria × ananassa Duchesne ex Rozier), infecting nearly all plant parts and causing severe outbreaks of leaf spot and fruit rot in Florida and globally. The development of host resistance is imperative due to the absence of fungicides that effectively inhibit Neopestalotiopsis sp. growth on an infected strawberry crop. Here, we analyzed 1578 individuals from the University of Florida's (UF) strawberry breeding program to identify and dissect genetic variation for resistance to Neopestalotiopsis sp. and to explore the feasibility of genomic selection. We found that less than 12% of elite UF germplasm exhibited resistance, with narrow-sense heritability estimates ranging from 0.28 to 0.69. Through genome-wide association studies (GWAS), we identified two loci accounting for 7%-16% of phenotypic variance across four trials and 3 years. Several candidate genes encoding pattern recognition receptors, intra-cellular nucleotide-binding leucine-rich repeats, and downstream components of plant defense pathways co-localized with the Neopestalotiopsis sp. resistance loci. Interestingly, favorable alleles at the largest-effect locus were rare in elite UF material and had previously been unintentionally introduced from an exotic cultivar. The array-based markers and candidate genes described herein provide the foundation for targeting this locus through marker-assisted selection. The predictive abilities of genomic selection models, with and without explicitly modeling peak GWAS markers as fixed effects, ranged between 0.25 and 0.59, suggesting that genomic selection holds promise for enhancing resistance to Neopestalotiopsis sp. in strawberry.


Assuntos
Resistência à Doença , Fragaria , Estudo de Associação Genômica Ampla , Doenças das Plantas , Fragaria/genética , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia
16.
Hortic Res ; 11(2): uhad271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38371635

RESUMO

Sugars are the main drivers of strawberry sweetness, and understanding their genetic control is of critical importance for breeding. Large-scale genome-wide association studies were performed in two populations totaling 3399 individuals evaluated for soluble solids content (SSC) and fruit yield. Two stable quantitative trait loci (QTL) on chromosome 3B and 6A for SSC were identified. Favorable haplotypes at both QTL for SSC decreased yield, though optimal allelic combinations were identified with reduced impacts on yield. Metabolites in the starch and sucrose metabolism pathway were characterized and quantified for 23 contrasting genotypes in leaves, white fruit, and red fruit. Variations in sucrose concentrations/efflux indicated genetic variation underlying sucrose accumulation and transportation during fruit ripening. Integration of genome-wide association studies and expression quantitative locus mapping identified starch synthase 4 (FxaC_10g00830) and sugar transporter 2-like candidate genes (FxaC_21g51570) within the respective QTL intervals. These results will enable immediate applications in genomics-assisted breeding for flavor and further study of candidate genes underlying genetic variation of sugar accumulation in strawberry fruit.

17.
Food Chem X ; 20: 100944, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38022735

RESUMO

Improving flavor can be an important goal of strawberry through breeding that is enhanced through the accurate identification and quantification of flavor compounds. Herein, a targeted metabolomics strategy was developed using liquid-liquid extraction, an in-house standard database, and GC-MS/MS analysis. The database consisted of key food odorants (KFOs), artificial flavor compounds (AFCs) and volatiles. A total of 131 flavor compounds were accurately identified in Medallion® 'FL 16.30-128' strawberry. Importantly, ethyl vanillin was identified for the first time in natural food. Multiple techniques, including GC-MS, GC-MS/MS and UPLC-MS/MS were applied to ensure the identification. The ethyl vanillin in the Medallion® samples were determined in a range of concentrations from 0.070 ± 0.0006 µg/kg to 0.1372 ± 0.0014 µg/kg by using stable isotope dilution analysis. The identification of ethyl vanillin in strawberry implys the future commercial use a natural flavor compound and the potential to identify genes and proteins associated with its biosynthesis.

18.
Plant Phenomics ; 2022: 9850486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36320455

RESUMO

Modeling plant canopy biophysical parameters at the individual plant level remains a major challenge. This study presents a workflow for automatic strawberry canopy delineation and biomass prediction from high-resolution images using deep neural networks. High-resolution (5 mm) RGB orthoimages, near-infrared (NIR) orthoimages, and Digital Surface Models (DSM), which were generated by Structure from Motion (SfM), were utilized in this study. Mask R-CNN was applied to the orthoimages of two band combinations (RGB and RGB-NIR) to identify and delineate strawberry plant canopies. The average detection precision rate and recall rate were 97.28% and 99.71% for RGB images and 99.13% and 99.54% for RGB-NIR images, and the mean intersection over union (mIoU) rates for instance segmentation were 98.32% and 98.45% for RGB and RGB-NIR images, respectively. Based on the center of the canopy mask, we imported the cropped RGB, NIR, DSM, and mask images of individual plants to vanilla deep regression models to model canopy leaf area and dry biomass. Two networks (VGG-16 and ResNet-50) were used as the backbone architecture for feature map extraction. The R 2 values of dry biomass models were about 0.76 and 0.79 for the VGG-16 and ResNet-50 networks, respectively. Similarly, the R 2 values of leaf area were 0.82 and 0.84, respectively. The RMSE values were approximately 8.31 and 8.73 g for dry biomass analyzed using the VGG-16 and ResNet-50 networks, respectively. Leaf area RMSE was 0.05 m2 for both networks. This work demonstrates the feasibility of deep learning networks in individual strawberry plant extraction and biomass estimation.

19.
Front Plant Sci ; 12: 640704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815448

RESUMO

Descriptive analysis via trained sensory panels has great power to facilitate flavor improvement in fresh fruits and vegetables. When paired with an understanding of fruit volatile organic compounds, descriptive analysis can help uncover the chemical drivers of sensory attributes. In the present study, 213 strawberry samples representing 56 cultivars and advanced selections were sampled over seven seasons and subjected to both sensory descriptive and chemical analyses. Principal component analysis and K-cluster analyses of sensory data highlighted three groups of strawberry samples, with one classified as superior with high sweetness and strawberry flavor and low sourness and green flavor. Partial least square models revealed 20 sweetness-enhancing volatile organic compounds and two sweetness-reducing volatiles, many of which overlap with previous consumer sensory studies. Volatiles modulating green, sour, astringent, overripe, woody, and strawberry flavors were also identified. The relationship between soluble solids content (SSC) and sweetness was modeled with Bayesian regression, generating probabilities for sweetness levels from varying levels of soluble solids. A hierarchical Bayesian model with month effects indicated that SSC is most correlated to sweetness toward the end of the fruiting season, making this the best period to make phenotypic selections for soluble solids. Comparing effects from genotypes, harvest months, and their interactions on sensory attributes revealed that sweetness, sourness, and firmness were largely controlled by genetics. These findings help formulate a paradigm for improvement of eating quality in which sensory analyses drive the targeting of chemicals important to consumer-desired attributes, which further drive the development of genetic tools for improvement of flavor.

20.
Hortic Res ; 8(1): 153, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193853

RESUMO

Powdery mildew (PM) caused by Podosphaera aphanis is a major fungal disease of cultivated strawberry. Mildew Resistance Locus O (MLO) is a gene family described for having conserved seven-transmembrane domains. Induced loss-of-function in specific MLO genes can confer durable and broad resistance against PM pathogens. However, the genomic structure and potential role of MLO genes for PM resistance have not been characterized yet in the octoploid cultivated strawberry. In the present study, MLO gene families were characterized in four diploid progenitor species (Fragaria vesca, F. iinumae, F. viridis, and F. nipponica) and octoploid cultivated (Fragaria ×ananassa) strawberry, and potential sources of MLO-mediated susceptibility were identified. Twenty MLO sequences were identified in F. vesca and 68 identified in F. ×ananassa. Phylogenetic analysis divided diploid and octoploid strawberry MLO genes into eight different clades, in which three FveMLO (MLO10, MLO17, and MLO20) and their twelve orthologs of FaMLO were grouped together with functionally characterized MLO genes conferring PM susceptibility. Copy number variations revealed differences in MLO composition among homoeologous chromosomes, supporting the distinct origin of each subgenome during the evolution of octoploid strawberry. Dissecting genomic sequence and structural variations in candidate FaMLO genes revealed their potential role associated with genetic controls and functionality in strawberry against PM pathogen. Furthermore, the gene expression profiling and RNAi silencing of putative FaMLO genes in response to the pathogen indicate the function in PM resistance. These results are a critical first step in understanding the function of strawberry MLO genes and will facilitate further genetic studies of PM resistance in cultivated strawberry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA