Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 153(9): 1671-1683, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497753

RESUMO

Breast cancer is composed of metabolically coupled cellular compartments with upregulation of TP53 Induced Glycolysis and Apoptosis Regulator (TIGAR) in carcinoma cells and loss of caveolin 1 (CAV1) with upregulation of monocarboxylate transporter 4 (MCT4) in fibroblasts. The mechanisms that drive metabolic coupling are poorly characterized. The effects of TIGAR on fibroblast CAV1 and MCT4 expression and breast cancer aggressiveness was studied using coculture and conditioned media systems and in-vivo. Also, the role of cytokines in promoting tumor metabolic coupling via MCT4 on cancer aggressiveness was studied. TIGAR downregulation in breast carcinoma cells reduces tumor growth. TIGAR overexpression in carcinoma cells drives MCT4 expression and NFkB activation in fibroblasts. IL6 and TGFB drive TIGAR upregulation in carcinoma cells, reduce CAV1 and increase MCT4 expression in fibroblasts. Tumor growth is abrogated in the presence of MCT4 knockout fibroblasts and environment. We discovered coregulation of c-MYC and TIGAR in carcinoma cells driven by lactate. Metabolic coupling primes the tumor microenvironment allowing for production, uptake and utilization of lactate. In sum, aggressive breast cancer is dependent on metabolic coupling.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Neoplasias da Mama/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Glicólise , Ácido Láctico/metabolismo , NF-kappa B/metabolismo , Apoptose , Linhagem Celular Tumoral , Microambiente Tumoral , Proteína Supressora de Tumor p53/metabolismo
2.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362298

RESUMO

Alterations in muscle structure and function in chronic kidney disease (CKD) patients are associated with poor outcomes. As key organelles in muscle cell homeostasis, mitochondrial metabolism has been studied in the context of muscle dysfunction in CKD. We conducted a study to determine the contribution of oxidative metabolism, glycolysis and fatty acid oxidation to the muscle metabolism in CKD. Mice developed CKD by exposure to adenine in the diet. Muscle of CKD mice showed significant weight loss compared to non-CKD mice, but only extensor digitorum longus (EDL) muscle showed a decreased number of fibers. There was no difference in the proportion of the various muscle fibers in CKD and non-CKD mice. Muscle of CKD mice had decreased expression of proteins associated with oxidative phosphorylation but increased expression of enzymes and transporters associated with glycolysis. In cell culture, myotubes exposed to uremic serum demonstrated decreased oxygen consumption rates (OCR) when glucose was used as substrate, conserved OCR when fatty acids were used and increased lactate production. In conclusion, mice with adenine-induced CKD developed sarcopenia and with increased glycolytic metabolism but without gross changes in fiber structure. In vitro models of uremic myopathy suggest fatty acid utilization is preserved compared to decreased glucose utilization.


Assuntos
Doenças Musculares , Insuficiência Renal Crônica , Camundongos , Animais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Doenças Musculares/metabolismo , Glucose/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Ácidos Graxos/metabolismo , Adenina/metabolismo
3.
J Biol Chem ; 291(51): 26291-26303, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27803158

RESUMO

A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Ácido Glutâmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Láctico/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Técnicas de Cocultura , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Ácido Glutâmico/genética , Glicólise/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Células MCF-7 , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Nephrol Dial Transplant ; 32(6): 943-951, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605780

RESUMO

BACKGROUND.: End-stage renal disease (ESRD) is associated with inflammation and increased reactive oxygen species (ROS). Inflammation and oxidative stress are associated with several complications of ESRD. The aim of this study was to determine histological characteristics of adipose tissue and muscle mitochondrial function in uremia and its relationship with inflammation. METHODS.: ESRD patients ( n = 18) and controls ( n = 6) were enrolled for studies of adipose and muscle tissue by immunohistochemistry and western blot. In a uremic muscle cell model, C2C12 cells were exposed to uremic serum and inflammatory cytokines. Mitochondrial function was studied by MitoTracker Orange, translocase of the mitochondrial outer membrane 20 (TOMM20) and mitochondrial oxidative phosphorylation complex subunit expression. RESULTS.: ESRD patients had increased macrophage infiltration in subcutaneous and visceral adipose tissue compared with controls, even in nonobese ESRD patients (P < 0.05). Compared with controls, TOMM20 expression in muscle tissue was lower in ESRD, consistent with reduced mitochondrial function (P < 0.05). C2C12 exposed to uremia had decreased mitotracker intensity (P < 0.05) and the reduced mitochondrial function was rescued by N-acetyl cysteine (P < 0.01). Similarly, C2C12 cells exposed to tumor necrosis factor α (TNF-α)/interleukin-6 (IL-6) have decreased mitotracker intensity (P < 0.01) that was rescued with adiponectin (P < 0.05). C2C12 exposed to TNF-α, IL-6 and buthionine sulfoximine had decreased TOMM20 expression and cells exposed to TNF-α showed a decrease in subunits of mitochondrial complexes I and III. CONCLUSION.: Our data indicate that uremia is associated with increased adipose tissue macrophage infiltration and concurrent muscle tissue mitochondrial dysfunction induced by inflammation/ROS. Adipose tissue is a potential source of inflammation in ESRD that is not due to increased adiposity and may contribute to mitochondrial dysfunction in uremia.


Assuntos
Gordura Intra-Abdominal/imunologia , Falência Renal Crônica/imunologia , Mitocôndrias Musculares/metabolismo , Uremia/imunologia , Adiponectina/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Linhagem Celular , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Gordura Intra-Abdominal/metabolismo , Falência Renal Crônica/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Uremia/metabolismo
5.
Cell Stress ; 8: 1-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476765

RESUMO

Mesenchymal-epithelial plasticity driving cancer progression in cancer-associated fibroblasts (CAFs) is undetermined. This work identifies a subgroup of CAFs in human breast cancer exhibiting mesenchymal-to-epithelial transition (MET) or epithelial-like profile with high miR-200c expression. MiR-200c overexpression in fibroblasts is sufficient to drive breast cancer aggressiveness. Oxidative stress in the tumor microenvironment induces miR-200c by DNA demethylation. Proteomics, RNA-seq and functional analyses reveal that miR-200c is a novel positive regulator of NFκB-HIF signaling via COMMD1 downregulation and stimulates pro-tumorigenic inflammation and glycolysis. Reprogramming fibroblasts toward MET via miR-200c reduces stemness and induces a senescent phenotype. This pro-tumorigenic profile in CAFs fosters carcinoma cell resistance to apoptosis, proliferation and immunosuppression, leading to primary tumor growth, metastases, and resistance to immuno-chemotherapy. Conversely, miR-200c inhibition in fibroblasts restrains tumor growth with abated oxidative stress and an anti-tumorigenic immune environment. This work determines the mechanisms by which MET in CAFs via miR-200c transcriptional enrichment with DNA demethylation triggered by oxidative stress promotes cancer progression. CAFs undergoing MET trans-differentiation and senescence coordinate heterotypic signaling that may be targeted as an anti-cancer strategy.

6.
Am J Pathol ; 181(1): 278-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22698676

RESUMO

Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1(+/+) versus Cav-1(-/-) age-matched young female mice). Mammary tumors grown in a Cav-1-deficient tumor microenvironment have an increased stromal content, with vimentin-positive myofibroblasts (a marker associated with oxidative stress) that are also positive for S6-kinase activation (a marker associated with aging). Mammary tumors grown in a Cav-1-deficient tumor microenvironment were more than fivefold larger than tumors grown in a wild-type microenvironment. Thus, a Cav-1-deficient tumor microenvironment provides a fertile soil for breast cancer tumor growth. Interestingly, the mammary tumor-promoting effects of a Cav-1-deficient microenvironment were estrogen and progesterone independent. In this context, chemoprevention was achieved by using the mammalian target of rapamycin (mTOR) inhibitor and anti-aging drug, rapamycin. Systemic rapamycin treatment of mammary tumors grown in a Cav-1-deficient microenvironment significantly inhibited their tumor growth, decreased their stromal content, and reduced the levels of both vimentin and phospho-S6 in Cav-1-deficient cancer-associated fibroblasts. Since stromal loss of Cav-1 is a marker of a lethal tumor microenvironment in breast tumors, these high-risk patients might benefit from treatment with mTOR inhibitors, such as rapamycin or other rapamycin-related compounds (rapalogues).


Assuntos
Envelhecimento/fisiologia , Anticarcinógenos/uso terapêutico , Caveolina 1/fisiologia , Neoplasias Mamárias Animais/prevenção & controle , Sirolimo/uso terapêutico , Animais , Caveolina 1/deficiência , Feminino , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/fisiopatologia , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Ovariectomia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Células Estromais/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Front Oncol ; 12: 906494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814364

RESUMO

The most common cancers of the aerodigestive tract (ADT) are non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC). The tumor stroma plays an important role in ADT cancer development and progression, and contributes to the metabolic heterogeneity of tumors. Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor stroma of ADT cancers and exert pro-tumorigenic functions. Metabolically, glycolytic CAFs support the energy needs of oxidative (OXPHOS) carcinoma cells. Upregulation of the monocarboxylate transporter 4 (MCT4) and downregulation of isocitrate dehydrogenase 3α (IDH3α) are markers of glycolysis in CAFs, and upregulation of the monocarboxylate transporter 1 (MCT1) and the translocase of the outer mitochondrial membrane 20 (TOMM20) are markers of OXPHOS in carcinoma cells. It is unknown if glycolytic metabolism in CAFs is a driver of ADT cancer aggressiveness. In this study, co-cultures in vitro and co-injections in mice of ADT carcinoma cells with fibroblasts were used as experimental models to study the effects of fibroblasts on metabolic compartmentalization, oxidative stress, carcinoma cell proliferation and apoptosis, and overall tumor growth. Glycolytic metabolism in fibroblasts was modulated using the HIF-1α inhibitor BAY 87-2243, the antioxidant N-acetyl cysteine, and genetic depletion of MCT4. We found that ADT human tumors express markers of metabolic compartmentalization and that co-culture models of ADT cancers recapitulate human metabolic compartmentalization, have high levels of oxidative stress, and promote carcinoma cell proliferation and survival. In these models, BAY 87-2243 rescues IDH3α expression and NAC reduces MCT4 expression in fibroblasts, and these treatments decrease ADT carcinoma cell proliferation and increase cell death. Genetic depletion of fibroblast MCT4 decreases proliferation and survival of ADT carcinoma cells in co-culture. Moreover, co-injection of ADT carcinoma cells with fibroblasts lacking MCT4 reduces tumor growth and decreases the expression of markers of metabolic compartmentalization in tumors. In conclusion, metabolic compartmentalization with high expression of MCT4 in CAFs drives aggressiveness in ADT cancers.

8.
Mol Genet Metab ; 104(3): 346-55, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21724437

RESUMO

The Smith-Lemli-Opitz syndrome (SLOS) is an inherited disorder of cholesterol synthesis caused by mutations in DHCR7 which encodes the final enzyme in the cholesterol synthesis pathway. The immediate precursor to cholesterol synthesis, 7-dehydrocholesterol (7-DHC) accumulates in the plasma and cells of SLOS patients which has led to the idea that the accumulation of abnormal sterols and/or reduction in cholesterol underlies the phenotypic abnormalities of SLOS. We tested the hypothesis that 7-DHC accumulates in membrane caveolae where it disturbs caveolar bilayer structure-function. Membrane caveolae from skin fibroblasts obtained from SLOS patients were isolated and found to accumulate 7-DHC. In caveolar-like model membranes containing 7-DHC, subtle, but complex alterations in intermolecular packing, lipid order and membrane width were observed. In addition, the BK(Ca) K(+) channel, which co-migrates with caveolin-1 in a membrane fraction enriched with cholesterol, was impaired in SLOS cells as reflected by reduced single channel conductance and a 50 mV rightward shift in the channel activation voltage. In addition, a marked decrease in BK(Ca) protein but not mRNA expression levels was seen suggesting post-translational alterations. Accompanying these changes was a reduction in caveolin-1 protein and mRNA levels, but membrane caveolar structure was not altered. These results are consistent with the hypothesis that 7-DHC accumulation in the caveolar membrane results in defective caveolar signaling. However, additional cellular alterations beyond mere changes associated with abnormal sterols in the membrane likely contribute to the pathogenesis of SLOS.


Assuntos
Cavéolas/metabolismo , Desidrocolesteróis/metabolismo , Fibroblastos/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Caveolina 1/metabolismo , Células Cultivadas , Desidrocolesteróis/química , Genótipo , Humanos , Immunoblotting , Membranas Artificiais , Microscopia Eletrônica , Estrutura Molecular , Pele/citologia , Esteróis/metabolismo , Difração de Raios X
9.
J Card Fail ; 17(3): 253-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21362533

RESUMO

BACKGROUND: Caveolins are scaffolding proteins that are integral components of caveolae, flask-shaped invaginations in the membranes of all mammalian cells. Caveolin-1 and -2 are expressed ubiquitously, whereas caveolin-3 is found only in muscle. The role of caveolin-3 in heart muscle disease is controversial. METHODS AND RESULTS: The present study was undertaken to assess the effects of left ventricular dysfunction on the expression of caveolin proteins using 2 well characterized models of murine heart failure and failing human heart. Transgenic mice with constitutive overexpression of A(1)-adenosine receptor (A(1)-TG) demonstrated cardiac dilatation and decreased left ventricular function at 10 weeks of age. This was accompanied by a marked decrease in caveolin-3 mRNA and protein levels compared with non-TG control mice. The change in caveolin-3 expression was selective, because levels of caveolin-1 and -2 did not change. Confocal imaging of myocytes isolated from A(1)-TG mice demonstrated a loss of the plate-like appearance of T tubules. Caveolin-3 levels were also reduced in hearts from mice overexpressing tumor necrosis factor α. There was a direct relationship between caveolin-3 expression and fractional shortening in all mice that were studied (r = 0.65; P < .001). Although we could not demonstrate a significant decrease in caveolin-3 levels in failing human heart, we did find a direct correlation (r = 0.7; P < .05) between levels of caveolin-3 protein and Ca(2+)-adenosine triphosphatase, a marker of the heart failure phenotype. CONCLUSIONS: These results suggest a relationship between left ventricular dysfunction and caveolin-3 levels and suggest that caveolin-3 may provide a novel target for heart failure therapy.


Assuntos
Caveolina 3/biossíntese , Modelos Animais de Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Animais , Células Cultivadas , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Disfunção Ventricular Esquerda/fisiopatologia
10.
Methods Cell Biol ; 163: 93-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785171

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common subsite of head and neck cancer, with a 5-year survival rate of only 50%. There is a pressing need for animal models that recapitulate the human disease to understand the factors driving OSCC carcinogenesis. Many laboratories have used the chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) to investigate OSCC formation. The importance of the 4NQO mouse model is that it mimics the stepwise progression observed in OSCC patients. The 4NQO carcinogen model has the advantage that it can be used with transgenic mice with genetic modification in specific tissue types to investigate their role in driving cancer progression. Herein, we describe the basic approach for administering 4NQO to mice to induce OSCC and methods for assessing the tissue and disease progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , 4-Nitroquinolina-1-Óxido/toxicidade , Animais , Carcinogênese , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Bucais/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço
11.
Sci Rep ; 11(1): 2974, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536542

RESUMO

In obesity, adipose tissue derived inflammation is associated with unfavorable metabolic consequences. Uremic inflammation is prevalent and contributes to detrimental outcomes. However, the contribution of adipose tissue inflammation in uremia has not been characterized. We studied the contribution of adipose tissue to uremic inflammation in-vitro, in-vivo and in human samples. Exposure to uremic serum resulted in activation of inflammatory pathways including NFκB and HIF1, upregulation of inflammatory cytokines/chemokines and catabolism with lipolysis, and lactate production. Also, co-culture of adipocytes with macrophages primed by uremic serum resulted in higher inflammatory cytokine expression than adipocytes exposed only to uremic serum. Adipose tissue of end stage renal disease subjects revealed increased macrophage infiltration compared to controls after BMI stratification. Similarly, mice with kidney disease recapitulated the inflammatory state observed in uremic patients and additionally demonstrated increased peripheral monocytes and inflammatory polarization of adipose tissue macrophages (ATMS). In contrast, adipose tissue in uremic IL-6 knock out mice showed reduced ATMS density compared to uremic wild-type controls. Differences in ATMS density highlight the necessary role of IL-6 in macrophage infiltration in uremia. Uremia promotes changes in adipocytes and macrophages enhancing production of inflammatory cytokines. We demonstrate an interaction between uremic activated macrophages and adipose tissue that augments inflammation in uremia.


Assuntos
Adipócitos/imunologia , Falência Renal Crônica/imunologia , Macrófagos/imunologia , Obesidade/complicações , Uremia/imunologia , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Estudos de Casos e Controles , Comunicação Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Inflamação/sangue , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Falência Renal Crônica/sangue , Falência Renal Crônica/metabolismo , Lipólise/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Obesidade/sangue , Obesidade/imunologia , Obesidade/metabolismo , Cultura Primária de Células , Células RAW 264.7 , Células THP-1 , Uremia/sangue , Uremia/metabolismo
12.
Am J Cancer Res ; 11(9): 4624-4637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659910

RESUMO

Post-transplant lymphoproliferative disorders (PTLD) are among the most serious complications after solid organ transplantation (SOT). Monomorphic diffuse large B-cell lymphoma (DLBCL) is the most common subtype of PTLD. Historically, outcomes of PTLD have been poor with high mortality rates and allograft loss, although this has improved in the last 10 years. Most of our understanding about PTLD DLBCL is extrapolated from studies in non-PTLD DLBCL, and while several clinical factors have been identified and validated for predicting non-PTLD DLBCL outcomes, the molecular profile of PTLD DLBCL has not yet been characterized. Compartment-specific metabolic reprograming has been described in non-PTLD DLBCL with a lactate uptake metabolic phenotype with high monocarboxylate transporter 1 (MCT1) expression associated with worse outcomes. The aim of our study was to compare the outcomes of PTLD in our transplant center to historic cohorts, as well as study a subgroup of our PTLD DLBCL tumors and compare metabolic profiles with non-PTLD DLBCL. We performed a retrospective single institution study of all adult patients who underwent a SOT between the years 1992-2018, who were later diagnosed with PTLD. All available clinical information was extracted from the patients' medical records. Tumor metabolic markers were studied in a subgroup of PTLD DLBCL and compared to a group of non-PTLD DLBCL. Thirty patients were diagnosed with PTLD following SOT in our center. Median time from SOT to PTLD diagnosis was 62.8 months (IQR 7.6; 134.4), with 37% of patients diagnosed with early PTLD, and 63% with late PTLD. The most common PTLD subtype was DLBCL. Most patients were treated with reduction of their immunosuppression (RIS) including a group who were switched from calcineurin inhibitor (CNI) to mTOR inhibitor based IS, in conjunction with standard anti-lymphoma chemoimmunotherapy. Progression free survival of the PTLD DLBCL cohort was calculated at 86% at 1 year, and 77% at 3 and 5-years, with overall survival of 86% at 1 and 3-years, and 75% at 5 years. Death censored allograft survival in the kidney cohort was 100% at 1 year, and 93% at 3, 5 and 10 years. MCT1 H scores were significantly higher in a subset of the non-PTLD DLBCL patients than in a PTLD DLBCL cohort. Our data is concordant with improved PTLD outcomes in the last 10 years. mTOR inhibitors could be an alternative to CNI as a RIS strategy. Finally, PTLD DLBCL may have a distinct metabolic profile with reduced MCT1 expression compared to non-PTLD DLBCL, but further studies are needed to corroborate our limited cohort findings and to determine if a specific metabolic profile is associated with outcomes.

13.
Am J Pathol ; 174(3): 746-61, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234134

RESUMO

Recently, we reported that human breast cancer-associated fibroblasts show functional inactivation of the retinoblastoma (RB) tumor suppressor and down-regulation of caveolin-1 (Cav-1) protein expression. However, it remains unknown whether loss of Cav-1 is sufficient to confer functional RB inactivation in mammary fibroblasts. To establish a direct cause-and-effect relationship, mammary stromal fibroblasts (MSFs) were prepared from Cav-1(-/-) null mice and subjected to phenotypic analysis. Here, we provide evidence that Cav-1(-/-) MSFs share many characteristics with human cancer-associated fibroblasts. The Cav-1(-/-) MSF transcriptome significantly overlaps with human cancer-associated fibroblasts; both show a nearly identical profile of RB/E2F-regulated genes that are up-regulated, which is consistent with RB inactivation. This Cav-1(-/-) MSF gene signature is predictive of poor clinical outcome in breast cancer patients treated with tamoxifen. Consistent with these findings, Cav-1(-/-) MSFs show RB hyperphosphorylation and the up-regulation of estrogen receptor co-activator genes. We also evaluated the paracrine effects of "conditioned media" prepared from Cav-1(-/-) MSFs on wild-type mammary epithelia. Our results indicate that Cav-1(-/-) MSF "conditioned media" is sufficient to induce an epithelial-mesenchymal transition, indicative of an invasive phenotype. Proteomic analysis of this "conditioned media" reveals increased levels of proliferative/angiogenic growth factors. Consistent with these findings, Cav-1(-/-) MSFs are able to undergo endothelial-like transdifferentiation. Thus, these results have important implications for understanding the role of cancer-associated fibroblasts and RB inactivation in promoting tumor angiogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caveolina 1/deficiência , Caveolina 1/genética , Fibroblastos/patologia , Células Estromais/patologia , Western Blotting , Mama/citologia , Mama/fisiologia , Neoplasias da Mama/mortalidade , Técnicas de Cultura de Células , Divisão Celular , Progressão da Doença , Intervalo Livre de Doença , Células Epiteliais/citologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Neoplásico/genética , Células Estromais/citologia , Células Estromais/fisiologia , Análise de Sobrevida
14.
Am J Pathol ; 174(2): 613-29, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19164602

RESUMO

Here, we show that functional loss of a single gene is sufficient to confer constitutive milk protein production and protection against mammary tumor formation. Caveolin-3 (Cav-3), a muscle-specific caveolin-related gene, is highly expressed in muscle cells. We demonstrate that Cav-3 is also expressed in myoepithelial cells within the mammary gland. To determine whether genetic ablation of Cav-3 expression affects adult mammary gland development, we studied the phenotype(s) of Cav-3(-/-)-null mice. Interestingly, Cav-3(-/-) virgin mammary glands developed lobulo-alveolar hyperplasia, akin to the changes normally observed during pregnancy and lactation. Genome-wide expression profiling revealed up-regulation of gene transcripts associated with pregnancy/lactation, mammary stem cells, and human breast cancers, consistent with a constitutive lactogenic phenotype. Expression levels of three key transcriptional regulators of lactation, namely Elf5, Stat5a, and c-Myc, were also significantly elevated. Experiments with pregnant mice directly showed that Cav-3(-/-) mice underwent precocious lactation. Finally, using orthotopic tumor cell implantation, we demonstrated that virgin Cav-3(-/-) mice were dramatically protected against mammary tumor formation. Thus, Cav-3(-/-) mice are a novel preclinical model to study the protective effects of a lactogenic microenvironment on mammary tumor onset and progression. Our current studies have broad implications for using the lactogenic microenvironment as a paradigm to discover new therapies for the prevention and/or treatment of human breast cancers.


Assuntos
Caveolina 3/genética , Caveolina 3/metabolismo , Expressão Gênica , Lactação/fisiologia , Neoplasias Mamárias Experimentais/genética , Animais , Movimento Celular/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Mutantes , Leite Humano/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase , Gravidez
15.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165962, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920118

RESUMO

Chondrosarcoma is the second most common primary bone malignancy, representing one fourth of all primary bone sarcomas. It is typically resistant to radiation and chemotherapy treatments. However, the molecular mechanisms that contribute to cancer aggressiveness in chondrosarcomas remain poorly characterized. Here, we studied the role of mitochondrial transporters in chondrosarcoma aggressiveness including chemotherapy resistance. Histological grade along with stage are the most important prognostic biomarkers in chondrosarcoma. We found that high-grade human chondrosarcoma tumors have higher expression of the mitochondrial protein, translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), compared to low-grade tumors. TOMM20 overexpression in human chondrosarcoma cells induces chondrosarcoma tumor growth in vivo. TOMM20 drives proliferation, resistance to apoptosis and chemotherapy resistance. Also, TOMM20 induces markers of epithelial to mesenchymal transition (EMT) and metabolic reprogramming in these mesenchymal tumors. In conclusion, TOMM20 drives chondrosarcoma aggressiveness and resistance to chemotherapy.


Assuntos
Neoplasias Ósseas/metabolismo , Condrossarcoma/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Condrossarcoma/tratamento farmacológico , Condrossarcoma/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Células Tumorais Cultivadas
16.
Mol Cancer Res ; 17(9): 1893-1909, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239287

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is comprised of metabolically linked distinct compartments. Cancer-associated fibroblasts (CAF) and nonproliferative carcinoma cells display a glycolytic metabolism, while proliferative carcinoma cells rely on mitochondrial oxidative metabolism fueled by the catabolites provided by the adjacent CAFs. Metabolic coupling between these reprogrammed compartments contributes to HNSCC aggressiveness. In this study, we examined the effects of cigarette smoke-exposed CAFs on metabolic coupling and tumor aggressiveness of HNSCC. Cigarette smoke (CS) extract was generated by dissolving cigarette smoke in growth media. Fibroblasts were cultured in CS or control media. HNSCC cells were cocultured in vitro and coinjected in vivo with CS or control fibroblasts. We found that CS induced oxidative stress, glycolytic flux and MCT4 expression, and senescence in fibroblasts. MCT4 upregulation was critical for fibroblast viability under CS conditions. The effects of CS on fibroblasts were abrogated by antioxidant treatment. Coculture of carcinoma cells with CS fibroblasts induced metabolic coupling with upregulation of the marker of glycolysis MCT4 in fibroblasts and markers of mitochondrial metabolism MCT1 and TOMM20 in carcinoma cells. CS fibroblasts increased CCL2 expression and macrophage migration. Coculture with CS fibroblasts also increased two features of carcinoma cell aggressiveness: resistance to cell death and enhanced cell migration. Coinjection of carcinoma cells with CS fibroblasts generated larger tumors with reduced apoptosis than control coinjections, and upregulation of MCT4 by CS exposure was a driver of these effects. We demonstrate that a tumor microenvironment exposed to CS is sufficient to modulate metabolism and cancer aggressiveness in HNSCC. IMPLICATIONS: CS shifts cancer stroma toward glycolysis and induces head and neck cancer aggressiveness with a mitochondrial profile linked by catabolite transporters and oxidative stress. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/17/9/1893/F1.large.jpg.


Assuntos
Fumar Cigarros/efeitos adversos , Neoplasias de Cabeça e Pescoço/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Regulação para Cima , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Transplante de Neoplasias , Estresse Oxidativo/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral/efeitos dos fármacos
17.
Otolaryngol Head Neck Surg ; 158(5): 867-877, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29232177

RESUMO

Objective Many aggressive head and neck cancers contain 2 metabolically coupled tumor compartments: a glycolytic stromal compartment with low caveolin-1 (CAV1) and high monocarboxylate transporter 4 (MCT4) expression and a highly proliferative carcinoma cell compartment with high MCT1. Metabolites are shuttled by MCTs from stroma to carcinoma to fuel tumor growth. We studied the effect of carcinoma-fibroblast coinjection and metformin administration on a mouse model of head and neck squamous cell carcinoma. Study Design Xenograft head and neck squamous cell carcinoma model. Setting Basic science laboratory. Subjects and Methods Oral cavity carcinoma cells were injected alone or as coinjection with human fibroblasts into nude mice to generate xenograft tumors. Tumors were excised and stained with immunohistochemistry for markers of metabolic coupling and apoptosis, including MCT1, MCT4, CAV1, and TUNEL assay (terminal deoxynucleotidyl transferase nick end labeling). Strength of staining was assessed by a pathologist or computer-assisted pathology software. Metformin was administered orally to mice to test effects on immunohistochemical markers in xenografts. Results Coinjection tumors were 2.8-fold larger ( P = .048) and had 1.4-fold stronger MCT1 staining ( P = .016) than tumors from homotypic carcinoma cell injection. Metformin decreased the size of coinjection xenograft tumors by 45% ( P = .025). Metformin reduced MCT1 staining by 28% ( P = .05) and increased carcinoma cell apoptosis 1.8-fold as marked by TUNEL assay ( P = .005). Metformin did not have a significant effect on tumor size when CAV1 knockdown fibroblasts were used in coinjection. Conclusion Coinjection with fibroblasts increases tumor growth and metabolic coupling in oral cavity cancer xenografts. Fibroblast CAV1 expression is required for metformin to disrupt metabolic coupling and decrease xenograft size.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Animais , Apoptose , Caveolina 1/metabolismo , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Fibroblastos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Nus , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Oncol ; 8: 324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30211114

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common human cancer and affects approximately 50,000 new patients every year in the US. The major risk factors for HNSCC are tobacco and alcohol consumption as well as oncogenic HPV infections. Despite advances in therapy, the overall survival rate for all-comers is only 50%. Understanding the biology of HNSCC is crucial to identifying new biomarkers, implementing early diagnostic approaches and developing novel therapies. As in several other cancers, HNSCC expresses elevated levels of MCT4, a member of the SLC16 family of monocarboxylate transporters. MCT4 is a H+-linked lactate transporter which functions to facilitate lactate efflux from highly glycolytic cells. High MCT4 levels in HNSCC have been associated with poor prognosis, but the role of MCT4 in the development and progression of this cancer is still poorly understood. In this study, we used 4-nitroquinoline-1-oxide (4NQO) to induce oral cancer in MCT4-/- and wild type littermates, recapitulating the disease progression in humans. Histological analysis of mouse tongues after 23 weeks of 4NQO treatment showed that MCT4-/- mice developed significantly fewer and less extended invasive lesions than wild type. In mice, as in human samples, MCT4 was not expressed in normal oral mucosa but was detected in the transformed epithelium. In the 4NQO treated mice we detected MCT4 in foci of the basal layer undergoing transformation, and progressively in areas of carcinoma in situ and invasive carcinomas. Moreover, we found MCT4 positive macrophages within the tumor and in the stroma surrounding the lesions in both human samples of HNSCC and in the 4NQO treated animals. The results of our studies showed that MCT4 could be used as an early diagnostic biomarker of HNSCC. Our finding with the MCT4-/- mice suggest MCT4 is a driver of progression to oral squamous cell cancer and MCT4 inhibitors could have clinical benefits for preventing invasive HNSCC.

19.
Front Oncol ; 8: 436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364350

RESUMO

Background: Metformin, an oral anti-hyperglycemic drug which inhibits mitochondrial complex I and oxidative phosphorylation has been reported to correlate with improved outcomes in head and neck squamous cell carcinoma (HNSCC) and other cancers. This effect is postulated to occur through disruption of tumor-driven metabolic and immune dysregulation in the tumor microenvironment (TME). We report new findings on the impact of metformin on the tumor and immune elements of the TME from a clinical trial of metformin in HNSCC. Methods: Human papilloma virus-(HPV-) tobacco+ mucosal HNSCC samples (n = 12) were compared to HPV+ oropharyngeal squamous cell carcinoma (OPSCC) samples (n = 17) from patients enrolled in a clinical trial. Apoptosis in tumor samples pre- and post-treatment with metformin was compared by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Metastatic lymph nodes with extra-capsular extension (ECE) in metformin-treated patients (n = 7) were compared to archival lymph node samples with ECE (n = 11) for differences in immune markers quantified by digital image analysis using co-localization and nuclear algorithms (PD-L1, FoxP3, CD163, CD8). Results: HPV-, tobacco + HNSCC (mean Δ 13.7/high power field) specimens had a significantly higher increase in apoptosis compared to HPV+ OPSCC specimens (mean Δ 5.7/high power field) (p < 0.001). Analysis of the stroma at the invasive front in ECE nodal specimens from both HPV-HNSCC and HPV+ OPSCC metformin treated specimens showed increased CD8+ effector T cell infiltrate (mean 22.8%) compared to archival specimens (mean 10.7%) (p = 0.006). Similarly, metformin treated specimens showed an increased FoxP3+ regulatory T cell infiltrate (mean 9%) compared to non-treated archival specimens (mean 5%) (p = 0.019). Conclusions: This study presents novel data demonstrating that metformin differentially impacts HNSCC subtypes with greater apoptosis in HPV-HNSCC compared to HPV+ OPSCC. Moreover, we present the first in vivo human evidence that metformin may also trigger increased CD8+ Teff and FoxP3+ Tregs in the TME, suggesting an immunomodulatory effect in HNSCC. Further research is necessary to assess the effect of metformin on the TME of HNSCC.

20.
Semin Oncol ; 44(3): 204-217, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-29248132

RESUMO

Metabolic heterogeneity between neoplastic cells and surrounding stroma has been described in several epithelial malignancies; however, the metabolic phenotypes of neoplastic lymphocytes and neighboring stroma in diffuse large B-cell lymphoma (DLBCL) is unknown. We investigated the metabolic phenotypes of human DLBCL tumors by using immunohistochemical markers of glycolytic and mitochondrial oxidative phosphorylation (OXPHOS) metabolism. The lactate importer MCT4 is a marker of glycolysis, whereas the lactate importer MCT1 and TOMM20 are markers of OXPHOS metabolism. Staining patterns were assessed in 33 DLBCL samples as well as 18 control samples (non-neoplastic lymph nodes). TOMM20 and MCT1 were highly expressed in neoplastic lymphocytes, indicating an OXPHOS phenotype, whereas non-neoplastic lymphocytes in the control samples did not express these markers. Stromal cells in DLBCL samples strongly expressed MCT4, displaying a glycolytic phenotype, a feature not seen in stromal elements of non-neoplastic lymphatic tissue. Furthermore, the differential expression of lactate exporters (MCT4) on tumor-associated stroma and lactate importers (MCT1) on neoplastic lymphocytes support the hypothesis that neoplastic cells are metabolically linked to the stroma likely via mutually beneficial reprogramming. MCT4 is a marker of tumor-associated stroma in neoplastic tissue. Our findings suggest that disruption of neoplastic-stromal cell metabolic heterogeneity including MCT1 and MCT4 blockade should be studied to determine if it could represent a novel treatment target in DLBCL.


Assuntos
Glicólise , Linfoma Difuso de Grandes Células B/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Linfócitos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Pessoa de Meia-Idade , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Receptores de Superfície Celular/metabolismo , Células Estromais/metabolismo , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA