Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1945): 20202726, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33593180

RESUMO

Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of [Formula: see text] at [Formula: see text] tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.


Assuntos
Hidrodinâmica , Robótica , Aceleração , Fenômenos Biomecânicos , Natação
2.
Bioinspir Biomim ; 16(2)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32927442

RESUMO

Tunas are flexible, high-performance open ocean swimmers that operate at high frequencies to achieve high swimming speeds. Most fish-like robotic systems operate at low frequencies (≤3 Hz) resulting in low swim speeds (≤1.5 body lengths per second), and the cost of transport (COT) is often one to four orders of magnitude higher than that of tunas. Furthermore, the impact of body flexibility on high-performance fish swimming remains unknown. Here we design and test a research platform based on yellowfin tuna (Thunnus albacares) to investigate the role of body flexibility and to close the performance gap between robotic and biological systems. This single-motor platform, termed Tunabot Flex, measures 25.5 cm in length. Flexibility is varied through joints in the tail to produce three tested configurations. We find that increasing body flexibility improves self-propelled swimming speeds on average by 0.5 body lengths per second while reducing the minimum COT by 53%. The most flexible configuration swims 4.60 body lengths per second with a tail beat frequency of 8.0 Hz and a COT measuring 18.4 J kg-1m-1. We then compare these results in addition to the midline kinematics, stride length, and Strouhal number with yellowfin tuna data. The COT of Tunabot Flex's most flexible configuration is less than a half-order of magnitude greater than that of yellowfin tuna across all tested speeds. Tunabot Flex provides a new baseline for the development of future bio-inspired underwater vehicles that aim to explore a fish-like, high-performance space and close the gap between engineered robotic systems and fish swimming ability.


Assuntos
Materiais Biomiméticos , Robótica , Natação , Animais , Fenômenos Biomecânicos , Atum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA