Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1788(3): 638-49, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19014902

RESUMO

A recently defined charge set, to be used in conjunction with the all-atom CHARMM27r force field, has been validated for a series of phosphatidylcholine lipids. The work of Sonne et al. successfully replicated experimental bulk membrane behaviour for dipalmitoylphosphatidylcholine (DPPC) under the isothermal-isobaric (NPT) ensemble. Previous studies using the defined CHARMM27r charge set have resulted in lateral membrane contraction when used in the tensionless NPT ensemble, forcing the lipids to adopt a more ordered conformation than predicted experimentally. The current study has extended the newly defined charge set to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphatidylcholine (PDPC). Molecular dynamics simulations were run for each of the lipids (including DPPC) using both the CHARMM27r charge set and the newly defined modified charge set. In all three cases a significant improvement was seen in both bulk membrane properties and individual atomistic effects. Membrane width, area per lipid and the depth of water penetration were all seen to converge to experimental values. Deuterium order parameters generated with the new charge set showed increased disorder across the width of the bilayer and reflected both results from experiment and similar simulations run with united atom models. These newly validated models can now find use in mixed biological simulations under the tensionless ensemble without concern for lateral contraction.


Assuntos
Fosfatidilcolinas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Simulação por Computador , Membranas Artificiais , Modelos Moleculares
2.
PLoS One ; 3(6): e2500, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18563203

RESUMO

BACKGROUND: Sequencing by hybridisation is an effective method for obtaining large amounts of DNA sequence information at low cost. The efficiency of SBH depends on the design of the probe library to provide the maximum information for minimum cost. Long probes provide a higher probability of non-repeated sequences but lead to an increase in the number of probes required whereas short probes may not provide unique sequence information due to repeated sequences. We have investigated the effect of probe length, use of reference sequences, and thermal filtering on the design of probe libraries for several highly variable target DNA sequences. RESULTS: We designed overlapping probe libraries for a range of highly variable drug target genes based on known sequence information and develop a formal terminology to describe probe library design. We find that for some targets these libraries can provide good coverage of a previously unseen target whereas for others the coverage is less than 30%. The optimal probe length varies from as short at 12 nt to as large as 19 nt and depends on the sequence, its variability, and the stringency of thermal filtering. It cannot be determined from inspection of an example gene sequence. CONCLUSIONS: Optimal probe length and the optimal number of reference sequences used to design a probe library are highly target specific for highly variable sequencing targets. The optimum design cannot be determined simply by inspection of input sequences or of alignments but only by detailed analysis of the each specific target. For highly variable sequences, shorter probes can in some cases provide better information than longer probes. Probe library design would benefit from a general purpose tool for analysing these issues. The formal terminology developed here and the analysis approaches it is used to describe will contribute to the development of such tools.


Assuntos
Sondas Moleculares , HIV/genética , Hepacivirus/genética , Orthomyxoviridae/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA