Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772017

RESUMO

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Assuntos
Eutérios , Evolução Molecular , Genoma/genética , Musaranhos , Peçonhas/genética , Animais , Eutérios/classificação , Eutérios/genética , Eutérios/fisiologia , Duplicação Gênica , Masculino , Filogenia , Proteômica , Musaranhos/classificação , Musaranhos/genética , Musaranhos/fisiologia , Calicreínas Teciduais/genética
2.
Biochim Biophys Acta Gen Subj ; 1861(4): 814-823, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28130154

RESUMO

BACKGROUND: Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. METHODS: A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. RESULTS: Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A2 (PLA2); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. CONCLUSIONS: The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. GENERAL SIGNIFICANCE: This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt.


Assuntos
Antivenenos/imunologia , Glândulas Salivares/metabolismo , Venenos de Serpentes/genética , Serpentes/genética , Transcriptoma/genética , Animais , Humanos , Lectinas Tipo C/genética , Metaloproteases/genética , Fosfolipases A2/genética , Proteoma/genética , Proteômica/métodos , Venenos de Serpentes/imunologia , Serpentes/imunologia , Árvores
3.
BMC Bioinformatics ; 15: 389, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25465054

RESUMO

BACKGROUND: Within many research areas, such as transcriptomics, the millions of short DNA fragments (reads) produced by current sequencing platforms need to be assembled into transcript sequences before they can be utilized. Despite recent advances in assembly software, creating such transcripts from read data harboring isoform variation remains challenging. This is because current approaches fail to identify all variants present or they create chimeric transcripts within which relationships between co-evolving sites and other evolutionary factors are disrupted. We present VTBuilder, a tool for constructing non-chimeric transcripts from read data that has been sequenced from sources containing isoform complexity. RESULTS: We validated VTBuilder using reads simulated from 54 Sanger sequenced transcripts (SSTs) expressed in the venom gland of the saw scaled viper, Echis ocellatus. The SSTs were selected to represent genes from major co-expressed toxin groups known to harbor isoform variants. From the simulated reads, VTBuilder constructed 55 transcripts, 50 of which had a greater than 99% sequence similarity to 48 of the SSTs. In contrast, using the popular assembler tool Trinity (r2013-02-25), only 14 transcripts were constructed with a similar level of sequence identity to just 11 SSTs. Furthermore VTBuilder produced transcripts with a similar length distribution to the SSTs while those produced by Trinity were considerably shorter. To demonstrate that our approach can be scaled to real world data we assembled the venom gland transcriptome of the African puff adder Bitis arietans using paired-end reads sequenced on Illumina's MiSeq platform. VTBuilder constructed 1481 transcripts from 5 million reads and, following annotation, all major toxin genes were recovered demonstrating reconstruction of complex underlying sequence and isoform diversity. CONCLUSION: Unlike other approaches, VTBuilder strives to maintain the relationships between co-evolving sites within the constructed transcripts, and thus increases transcript utility for a wide range of research areas ranging from transcriptomics to phylogenetics and including the monitoring of drug resistant parasite populations. Additionally, improving the quality of transcripts assembled from read data will have an impact on future studies that query these data. VTBuilder has been implemented in java and is available, under the GPL GPU V0.3 license, from http:// http://www.lstmed.ac.uk/vtbuilder .


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Software , Transcriptoma/genética , Venenos de Víboras/química , Viperidae/genética , Animais , Bases de Dados Factuais , Anotação de Sequência Molecular , Isoformas de Proteínas , Venenos de Víboras/genética , Viperidae/metabolismo
4.
J Biol Chem ; 287(48): 40302-16, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23071107

RESUMO

BACKGROUND: Caveolin-3 facilitates both caveolae formation and a range of cell signaling pathways, including Ca(2+) homeostasis. RESULTS: Caveolin-3 forms a disc-shaped nonamer that binds the Ca(2+)-release channel, RyR1. CONCLUSION: Multiple caveolin-3 nonamers bind to a single RyR1 homotetramer. SIGNIFICANCE: First three-dimensional structural insights into caveolin-3 assembly, interactions with RyR1 suggest a novel role in muscle contraction and/or for channel localization within the membrane. Caveolin-3 (cav-3), an integral membrane protein, is a building block of caveolae as well as a regulator of a number of physiological processes by facilitating the formation of multiprotein signaling complexes. We report that the expression of cav-3 in insect (Sf9) cells induces caveola formation, comparable in size with those observed in native tissue. We have also purified the recombinant cav-3 determining that it forms an oligomer of ∼220 kDa. We present the first three-dimensional structure for cav-3 (using transmission electron microscopy and single particle analysis methods) and show that nine cav-3 monomers assemble to form a complex that is toroidal in shape, ~16.5 nm in diameter and ~ 5.5 nm in height. Labeling experiments and reconstitution of the purified cav-3 into liposomes have allowed a proposal for the orientation of the protein with respect to the membrane. We have identified multiple caveolin-binding motifs within the ryanodine receptor (RyR1) sequence employing a bioinformatic analysis. We have then shown experimentally that there is a direct interaction between recombinant cav-3 nonamers and purified RyR1 homotetramers that would imply that at least one of the predicted cav-3-binding sites is exposed within the fully assembled RyR1 structure. The cav-3 three-dimensional model provides new insights as to how a cav-3 oligomer can bind multiple partners in close proximity to form signaling complexes. Furthermore, a direct interaction with RyR1 suggests a possible role for cav-3 as a modifier of muscle excitation-contraction coupling and/or for localization of the receptor to regions of the sarcoplasmic reticulum.


Assuntos
Caveolina 3/química , Caveolina 3/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Cavéolas/química , Cavéolas/metabolismo , Caveolina 3/genética , Dimerização , Humanos , Modelos Moleculares , Músculo Esquelético/química , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
5.
J Proteomics ; 218: 103707, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32087377

RESUMO

The asp viper Vipera aspis aspis is a venomous snake found in France, and despite its medical importance, the complete toxin repertoire produced is unknown. Here, we used a venomics approach to decipher the composition of its venom. Transcriptomic analysis revealed 80 venom-annotated sequences grouped into 16 gene families. Among the most represented toxins were snake venom metalloproteases (23%), phospholipases A2 (15%), serine proteases (13%), snake venom metalloprotease inhibitors (13%) and C-type lectins (12%). LC-MS of venoms revealed similar profiles regardless of the method of extraction (milking vs defensive bite). Proteomic analysis validated 57 venom-annotated transcriptomic sequences (>70%), including one for each of the 16 families, but also identified 7 sequences not initially annotated as venom proteins, including a serine protease, a disintegrin, a glutaminyl-peptide cyclotransferase, a proactivator polypeptide-like and 3 aminopeptidases. Interestingly, phospholipases A2 were the dominant proteins in the venom, among which included an ammodytoxin B-like sequence, which may explain the reported neurotoxicity following some asp viper envenomations. In total, 87 sequences were retrieved from the Vipera aspis aspis transcriptome and proteome, constituting a valuable resource that will help in understanding the toxinological basis of clinical signs of envenoming and for the mining of useful pharmacological compounds. BIOLOGICAL SIGNIFICANCE: The asp viper (Vipera aspis aspis) causes several hundred envenomations annually in France, including unusual cases with neurological signs, resulting in one death per year on average. Here, we performed a proteotranscriptomic analysis of V. a. aspis venom in order to provide a better understanding of its venom composition. We found that, as in other Vipera species, phospholipase A2 dominates in the venom, and the presence of a sequence related to ammodytoxin B may explain the reported neurotoxicity following some asp viper envenomations. Thus, this study will help in informing the toxinological basis of clinical signs of envenoming.


Assuntos
Proteômica , Viperidae , Animais , França , Humanos , Metaloproteases/genética , Fosfolipases A2 , Venenos de Víboras
6.
J Proteomics ; 199: 31-50, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30763806

RESUMO

We report on the variable venom composition of a population of the Caucasus viper (Vipera kaznakovi) in Northeastern Turkey. We applied a combination of venom gland transcriptomics, de-complexing bottom-up and top-down venomics. In contrast to sole bottom-up venomics approaches and gel or chromatography based venom comparison, our combined approach enables a faster and more detailed comparison of venom proteomes from multiple individuals. In total, we identified peptides and proteins from 15 toxin families, including snake venom metalloproteinases (svMP; 37.8%), phospholipases A2 (PLA2; 19.0%), snake venom serine proteinases (svSP; 11.5%), C-type lectins (CTL; 6.9%) and cysteine-rich secretory proteins (CRISP; 5.0%), in addition to several low abundant toxin families. Furthermore, we identified intraspecies variations of the venom composition of V. kaznakovi, and find these were mainly driven by the age of the animals, with lower svSP abundance detected in juveniles. On the proteoform level, several small molecular weight toxins between 5 and 8 kDa in size, as well as PLA2s, drove the differences observed between juvenile and adult individuals. This study provides novel insights into the venom variability of V. kaznakovi and highlights the utility of intact mass profiling for fast and detailed comparison of snake venom. BIOLOGICAL SIGNIFICANCE: Population level and ontogenetic venom variation (e.g. diet, habitat, sex or age) can result in a loss of antivenom efficacy against snakebites from wide ranging snake populations. The current state of the art for the analysis of snake venoms are de-complexing bottom-up proteomics approaches. While useful, these have the significant drawback of being time-consuming and following costly protocols, and consequently are often applied to pooled venom samples. To overcome these shortcomings and to enable rapid and detailed profiling of large numbers of individual venom samples, we integrated an intact protein analysis workflow into a transcriptomics-guided bottom-up approach. The application of this workflow to snake individuals of a local population of V. kaznakovi revealed intraspecies variations in venom composition, which are primarily explained by the age of the animals, and highlighted svSP abundance to be one of the molecular drivers for the compositional differences observed.


Assuntos
Espectrometria de Massas/métodos , Venenos de Víboras/química , Fatores Etários , Animais , Antivenenos/química , Biodiversidade , Metaloproteases/análise , Fosfolipases A2/análise , Proteômica/métodos , Especificidade da Espécie , Transcriptoma , Turquia , Venenos de Víboras/enzimologia , Viperidae
7.
J Proteomics ; 198: 186-198, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30290233

RESUMO

While envenoming by the southern African shield-nosed or coral snakes (genus Aspidelaps) has caused fatalities, bites are uncommon. Consequently, this venom is not used in the mixture of snake venoms used to immunise horses for the manufacture of regional SAIMR (South African Institute for Medical Research) polyvalent antivenom. Aspidelaps species are even excluded from the manufacturer's list of venomous snakes that can be treated by this highly effective product. This leaves clinicians, albeit rarely, in a therapeutic vacuum when treating envenoming by these snakes. This is a significantly understudied small group of nocturnal snakes and little is known about their venom compositions and toxicities. Using a murine preclinical model, this study determined that the paralysing toxicity of venoms from Aspidelaps scutatus intermedius, A. lubricus cowlesi and A. l. lubricus approached that of venoms from highly neurotoxic African cobras and mambas. This finding was consistent with the cross-genus dominance of venom three-finger toxins, including numerous isoforms which showed extensive interspecific variation. Our comprehensive analysis of venom proteomes showed that the three Aspidelaps species possess highly similar venom proteomic compositions. We also revealed that the SAIMR polyvalent antivenom cross-reacted extensively in vitro with venom proteins of the three Aspidelaps. Importantly, this cross-genus venom-IgG binding translated to preclinical (in a murine model) neutralisation of A. s. intermedius venom-induced lethality by the SAIMR polyvalent antivenom, at doses comparable with those that neutralise venom from the cape cobra (Naja nivea), which the antivenom is directed against. Our results suggest a wider than anticipated clinical utility of the SAIMR polyvalent antivenom, and here we seek to inform southern African clinicians that this readily available antivenom is likely to prove effective for victims of Aspidelaps envenoming. BIOLOGICAL SIGNIFICANCE: Coral and shield-nosed snakes (genus Aspidelaps) comprise two species and several subspecies of potentially medically important venomous snakes distributed in Namibia, Botswana, Zimbabwe, Mozambique and South Africa. Documented human fatalities, although rare, have occurred from both A. lubricus and A. scutatus. However, their venom proteomes and the pathological effects of envenomings by this understudied group of nocturnal snakes remain uncharacterised. Furthermore, no commercial antivenom is made using venom from species of the genus Aspidelaps. To fill this gap, we have conducted a transcriptomics-guided comparative proteomics analysis of the venoms of the intermediate shield-nose snake (A. s. intermedius), southern coral snake (A. l. lubricus), and Cowle's shield snake (A. l. cowlesi); investigated the mechanism of action underpinning lethality by A. s. intermedius in the murine model; and assessed the in vitro immunoreactivity of the SAIMR polyvalent antivenom towards the venom toxins of A. l. lubricus and A. l. cowlesi, and the in vivo capability of this antivenom at neutralising the lethal effect of A. s. intermedius venom. Our data revealed a high degree of conservation of the global composition of the three Aspidelaps venom proteomes, all characterised by the overwhelming predominance of neurotoxic 3FTxs, which induced classical signs of systemic neurotoxicity in mice. The SAIMR polyvalent antivenom extensively binds to Aspidelaps venom toxins and neutralised, with a potency of 0.235 mg venom/mL antivenom, the lethal effect of A. s. intermedius venom. Our data suggest that the SAIMR antivenom could be a useful therapeutic tool for treating human envenomings by Aspidelaps species.


Assuntos
Antivenenos , Cobras Corais/metabolismo , Venenos Elapídicos , Proteínas de Répteis , Animais , Antivenenos/imunologia , Antivenenos/farmacologia , Venenos Elapídicos/química , Venenos Elapídicos/imunologia , Venenos Elapídicos/metabolismo , Venenos Elapídicos/toxicidade , Cavalos , Humanos , Imunização , Masculino , Camundongos , Proteínas de Répteis/química , Proteínas de Répteis/imunologia , Proteínas de Répteis/metabolismo , Proteínas de Répteis/toxicidade , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/imunologia , Mordeduras de Serpentes/metabolismo , África do Sul
8.
Front Pharmacol ; 10: 848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417406

RESUMO

Snakebite is a neglected tropical disease that causes 138,000 deaths each year. Neurotoxic snake venoms contain small neurotoxins, including three-finger toxins (3FTxs), which can cause rapid paralysis in snakebite victims by blocking postsynaptic transmission via nicotinic acetylcholine receptors (nAChRs). These toxins are typically weakly immunogenic and thus are often not effectively targeted by current polyclonal antivenom therapies. We investigated whether nAChR mimics, also known as acetylcholine binding proteins (AChBPs), could effectively capture 3FTxs and therefore be developed as a novel class of snake-generic therapeutics for combatting neurotoxic envenoming. First, we identified the binding specificities of 3FTx from various medically important elapid snake venoms to nAChR using two recombinant nAChR mimics: the AChBP from Lymnaea stagnalis and a humanized neuronal α7 version (α7-AChBP). We next characterized these AChBP-bound and unbound fractions using SDS-PAGE and mass spectrometry. Interestingly, both mimics effectively captured long-chain 3FTxs from multiple snake species but largely failed to capture the highly related short-chain 3FTxs, suggesting a high level of binding specificity. We next investigated whether nAChR mimics could be used as snakebite therapeutics. We showed that while α7-AChBP alone did not protect against Naja haje (Egyptian cobra) venom lethality in vivo, it significantly prolonged survival times when coadministered with a nonprotective dose of antivenom. Thus, nAChR mimics are capable of neutralizing specific venom toxins and may be useful adjunct therapeutics for improving the safety and affordability of existing snakebite treatments by reducing therapeutic doses. Our findings justify exploring the future development of AChBPs as potential snakebite treatments.

9.
J Proteomics ; 172: 173-189, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28843532

RESUMO

Mambas (genus Dendroaspis) are among the most feared of the medically important elapid snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity of venom composition, remain relatively understudied. Here, we present a reconstruction of mamba phylogeny, alongside genus-wide venom gland transcriptomic and high-resolution top-down venomic analyses. Whereas the green mambas, D. viridis, D. angusticeps, D. j. jamesoni and D. j. kaimosae, express 3FTx-predominant venoms, black mamba (D. polylepis) venom is dominated by dendrotoxins I and K. The divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas makes it plausible that this major difference in venom composition is due to dietary variation. The pattern of intrageneric venom variability across Dendroaspis represented a valuable opportunity to investigate, in a genus-wide context, the variant toxicity of the venom, and the degree of paraspecific cross-reactivity between antivenoms and mamba venoms. To this end, the immunological profiles of the five mamba venoms were assessed against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview of which available antivenoms may be more efficacious in neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the notably different potency and pharmacological profiles of Dendroaspis venoms at locus resolution. This understanding will allow selection and design of toxin immunogens with a view to generating a safer and more efficacious pan-specific antivenom against any mamba envenomation. BIOLOGICAL SIGNIFICANCE: The mambas (genus Dendroaspis) comprise five especially notorious medically important venomous snakes endemic to sub-Saharan Africa. Their highly potent venoms comprise a high diversity of pharmacologically active peptides, including extremely rapid-acting neurotoxins. Previous studies on mamba venoms have focused on the biochemical and pharmacological characterisation of their most relevant toxins to rationalize the common neurological and neuromuscular symptoms of envenomings caused by these species, but there has been little work on overall venom composition or comparisons between them. Only very recently an overview of the composition of the venom of two Dendroaspis species, D. angusticeps and D. polylepis, has been unveiled through venomics approaches. Here we present the first genus-wide transcriptomic-proteomic analysis of mamba venom composition. The transcriptomic analyses described in this paper have contributed 29 (D. polylepis), 23 (D. angusticeps), 40 (D. viridis), 25 (D. j. jamesoni) and 21 (D. j. kaimosae), novel full-length toxin sequences to the non-redundant Dendroaspis sequence database. The mamba genus-wide venomic analysis demonstrated that major D. polylepis venom components are Kunitz-fold family toxins. This feature is unique in relation to the relatively conserved three-finger toxin (3FTx)-dominated venom compositions of the green mambas. Venom variation was interpreted in the context of dietary variation due to the divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas. Additionally, the degree of cross-reactivity conservation of mamba venoms was assessed by antivenomics against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview to infer which available antivenoms may be capable of neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the pharmacological profiles of mamba venoms at locus resolution. This understanding will contribute to the generation of a safer and more efficacious pan-Dendroaspis therapeutic antivenom against any mamba envenomation.


Assuntos
Antivenenos/imunologia , Dendroaspis , Venenos Elapídicos/química , África Subsaariana , Animais , Dieta , Venenos Elapídicos/imunologia , Venenos Elapídicos/toxicidade , Elapidae , Humanos , Filogenia , Especificidade da Espécie , Transcriptoma
10.
Genome Biol Evol ; 10(8): 2110-2129, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060036

RESUMO

Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes.


Assuntos
Evolução Molecular , Genoma , Anotação de Sequência Molecular , Comportamento Predatório , Serpentes/genética , Adaptação Fisiológica , Animais , Feminino , Células Fotorreceptoras de Vertebrados , Receptores Odorantes/genética , Répteis/classificação , Répteis/genética , Pigmentos da Retina/genética , Seleção Genética , Serpentes/classificação , Serpentes/fisiologia , Peçonhas/genética , Canais de Sódio Disparados por Voltagem/genética
11.
PLoS Negl Trop Dis ; 10(6): e0004615, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280729

RESUMO

BACKGROUND: Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland. Answering these questions will address the feasibility of using venom-derived RNA for future research relevant to biomedical and antivenom applications. METHODOLOGY/PRINCIPAL FINDINGS: Venom was extracted from several species of snake, including both members of the Viperidae and Elapidae, and either lyophilized or immediately added to TRIzol reagent. TRIzol-treated venom was incubated at a range of temperatures (4-37°C) for a range of durations (0-48 hours), followed by subsequent RNA isolation and assessments of RNA quantity and quality. Subsequently, full-length toxin transcripts were targeted for PCR amplification and Sanger sequencing. TRIzol-treated venom yielded total RNA of greater quantity and quality than lyophilized venom, and with quality comparable to venom gland-derived RNA. Full-length sequences from multiple Viperidae and Elapidae toxin families were successfully PCR amplified from TRIzol-treated venom RNA. We demonstrated that venom can be stored in TRIzol for 48 hours at 4-19°C, and 8 hours at 37°C, at minimal cost to RNA quality, and found that venom RNA encoded multiple toxin isoforms that seemed homologous (98-99% identity) to those found in the venom gland. CONCLUSIONS/SIGNIFICANCE: The non-invasive experimental modifications we propose will facilitate the future investigation of venom composition by using venom as an alternative source to venom gland tissue for RNA-based studies, thus obviating the undesirable need to sacrifice snakes for such research purposes. In addition, they expand research horizons to rare, endangered or protected snake species and provide more flexibility to performing fieldwork on venomous snakes in tropical conditions.


Assuntos
Elapidae/fisiologia , RNA Mensageiro/química , Venenos de Serpentes/química , Viperidae/fisiologia , Sequência de Aminoácidos , Animais , Guanidinas/química , Fenóis/química , RNA Mensageiro/genética , Manejo de Espécimes , Temperatura , Clima Tropical
12.
Pharmacol Ther ; 151: 50-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25779609

RESUMO

Diabetes is a global health problem with more than 550 million people predicted to be diabetic by 2030. A major complication of diabetes is cardiovascular disease, which accounts for over two-thirds of mortality and morbidity in diabetic patients. This increased risk has led to the definition of a diabetic cardiomyopathy phenotype characterised by early left ventricular dysfunction with normal ejection fraction. Here we review the aetiology of diabetic cardiomyopathy and explore the involvement of the protein caveolin-3 (Cav3). Cav3 forms part of a complex mechanism regulating insulin signalling and glucose uptake, processes that are impaired in diabetes. Further, Cav3 is key for stabilisation and trafficking of cardiac ion channels to the plasma membrane and so contributes to the cardiac action potential shape and duration. In addition, Cav3 has direct and indirect interactions with proteins involved in excitation-contraction coupling and so has the potential to influence cardiac contractility. Significantly, both impaired contractility and rhythm disturbances are hallmarks of diabetic cardiomyopathy. We review here how changes to Cav3 expression levels and altered relationships with interacting partners may be contributory factors to several of the pathological features identified in diabetic cardiomyopathy. Finally, the review concludes by considering ways in which levels of Cav3 may be manipulated in order to develop novel therapeutic approaches for treating diabetic cardiomyopathy.


Assuntos
Caveolina 3/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Animais , Caveolina 1/metabolismo , Caveolina 3/genética , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/terapia , Terapia Genética , Glucose/metabolismo , Humanos , Insulina/metabolismo , MicroRNAs/metabolismo , Terapia de Alvo Molecular , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA