Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Inorg Chem Commun ; 18: 92-96, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22942668

RESUMO

An improved synthesis of a 3,4 hydroxypyridinone (HOPO) functionalized mesoporous silica is described. Higher 3,4-HOPO monolayer ligand loadings have been achieved, resulting in better performance. Performance improvements were demonstrated with the capture of U(VI) from human blood, plasma and filtered river water.

2.
Small ; 5(8): 961-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19242951

RESUMO

The ability to process and purify engineered nanomaterials using near critical or supercritical fluids (NcFs or ScFs) has enormous potential for the application at various stages of the development of green nanomaterials. The dispersibility of octanethiol-stabilized gold nanocrystals of different core sizes is explored, which were chosen to serve as model nanomaterials of general interest in compressed ethane and propane over a wide range of fluid conditions. Both solvents have enormous potential for the environmentally benign processing and transport of engineered nanomaterials due to their nominal toxicity and high degree of tunability and processability that can essentially eliminate solvent waste. The dispersibility is determined by measuring the absorption spectra of dispersions of various sizes of nanocrystals in NcFs. To better understand the obtained results three models, the total interaction theory, the sedimentation coefficient equation, and the Chrastil method, are discussed. Nanoparticle dispersibility versus density plots are strongly dependent on nanoparticle size and solvent conditions, with the dispersion of larger nanocrystals more dependent on changes of pressure or density at a given temperature. For the range of nanoparticle sizes studied, compressed ethane at 25 degrees C leads to a greater tunability of nanoparticle dispersion when compared with compressed propane at 65 degrees C. For equivalent pressures, compressed propane is found to provide better solubility than ethane due to its higher density. The results quantitatively demonstrate that NcFs can offer pressure-tunable, size-selective control of nanoparticle solvation and transport at easily obtainable temperature and pressure conditions. These capabilities provide clear advantages over conventional solvents and direct application to various nanomaterials processes, such as synthesis, separation, transport, and purification of nanocrystals.


Assuntos
Ouro/química , Nanopartículas/química , Nanoestruturas/química , Solventes/química , Cristalização , Etano/química , Propano/química , Temperatura
3.
J Hazard Mater ; 366: 677-683, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30580142

RESUMO

This work evaluated sorbent materials created from nanoporous silica self-assembled with monolayer (SAMMS) of hydroxypyridinone derivatives (1,2-HOPO, 3,2-HOPO, 3,4-HOPO), acetamide phosphonate (Ac-Phos), glycine derivatives (IDAA, DE4A, ED3A), and thiol (SH) for capturing of actinides and transition metal cobalt. In filtered seawater doped with competing metals (Cr, Mn, Fe, Co, Cu, Zn, Se, Mo) at levels encountered in environmental or physiological samples, 3,4-HOPO-SAMMS was best at capturing uranium (U(VI)) from pH 2-8, Ac-Phos and 1,2-HOPO-SAMMS sorbents were best at pH < 2. 3,4-HOPO-SAMMS effectively captured thorium (Th(IV)) and plutonium (239Pu(IV)) from pH 2-8, and americium (241Am(III)) from pH 5-8. Capturing cobalt (Co(II)) from filtered river water doped with competing metals (Cu, As, Ag, Cd, Hg, Tl, and Pb) was most effective from pH 5-8 with binding affinity ranged from IDAA > DE4A > ED3A > Ac-Phos > SH on SAMMS. Iminodiacetic acid (IDAA)-SAMMS was also outstanding at capturing Co(II) in ground and seawater. Within 5 min, over 99% of U(VI) and Co(II) in seawater was captured by 3,4-HOPO-SAMMS and IDAA-SAMMS, respectively. These nanoporous materials outperformed the commercially available cation sorbents in binding affinity and adsorption rate. They have great potential for water treatment and recovery of actinides and cobalt from complex matrices.

4.
J Nanosci Nanotechnol ; 8(11): 5781-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19198305

RESUMO

In this work we introduce an efficient method for averting non-specific adsorption of various nanoparticles to typical oxide surfaces, such as glass, quartz, and sapphire, through the attachment of a fluorinated self-assembled monolayer (SAM) that minimizes the interactions between stabilized nanoparticles and these surfaces. This surface treatment is shown to be effective for a variety of nanoparticles in a range of solvent systems. As a result, monitoring and characterization of nanoparticles and their surface chemistry is allowed, while simultaneously preventing loss of expensive nanomaterials to the various surfaces inherent in laboratory apparatus.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Óxidos/química , Adsorção , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
5.
Chem Commun (Camb) ; (3): 430-1, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12613647

RESUMO

The first group 15 amido-cyclopentadienyl (constrained geometry) cations have been prepared and structurally characterized; the structure of the stibenium cation is different from those of the corresponding phosphenium and arsenium cations.

6.
Chem Commun (Camb) ; (16): 2072-3, 2003 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12934917

RESUMO

The surprising reaction of GaCl3 or InBr3 with the di-Grignard reagent [Me2Si(C5Me4)(N-t-Bu)](MgCl)2 x THF results in salts of the bimetallic anions of composition [X3M[C5Me4(N-t-Bu)]MX2]- (M = Ga, X = Cl; M = In; X = Br) in which the MX2 moiety undergoes an eta2-interaction with one of the double bonds of the localized cyclopentadienide ring.

7.
Health Phys ; 99(3): 413-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20699706

RESUMO

Self-assembled monolayer on mesoporous supports (SAMMS) are hybrid materials created from attachment of organic moieties onto very high surface area mesoporous silica. SAMMS with surface chemistries including three isomers of hydroxypyridinone, diphosphonic acid, acetamide phosphonic acid, glycinyl urea, and diethylenetriamine pentaacetate (DTPA) analog were evaluated for chelation of actinides ((239)Pu, (241)Am, uranium, thorium) from blood. Direct blood decorporation using sorbents does not have the toxicity or renal challenges associated with traditional chelation therapy and may have potential applications for critical exposure cases, reduction of nonspecific dose during actinide radiotherapy, and for sorbent hemoperfusion in renal insufficient patients, whose kidneys clear radionuclides at a very slow rate. Sorption affinity (K(d)), sorption rate, selectivity, and stability of SAMMS were measured in batch contact experiments. An isomer of hydroxypyridinone (3,4-HOPO) on SAMMS demonstrated the highest affinity for all four actinides from blood and plasma and greatly outperformed the DTPA analog on SAMMS and commercial resins. In batch contact, a fifty percent reduction of actinides in blood was achieved within minutes, and there was no evidence of protein fouling or material leaching in blood after 24 h. The engineered form of SAMMS (bead format) was further evaluated in a 100-fold scaled-down hemoperfusion device and showed no blood clotting after 2 h. A 0.2 g quantity of SAMMS could reduce 50 wt.% of 100 ppb uranium in 50 mL of plasma in 18 min and that of 500 dpm mL(-1) in 24 min. 3,4-HOPO-SAMMS has a long shelf-life in air and at room temperature for at least 8 y, indicating its feasibility for stockpiling in preparedness for an emergency. The excellent efficacy and stability of SAMMS materials in complex biological matrices suggest that SAMMS can also be used as orally administered drugs and for wound decontamination. By changing the organic groups of SAMMS, they can be used not only for actinides but also for other radionuclides. By using the mixture of these SAMMS materials, broad spectrum decorporation of radionuclides is very feasible.


Assuntos
Elementos da Série Actinoide/sangue , Elementos da Série Actinoide/isolamento & purificação , Quelantes/química , Descontaminação/métodos , Elementos da Série Actinoide/química , Adsorção , Amerício/sangue , Amerício/isolamento & purificação , Humanos , Isomerismo , Ácido Pentético/química , Plutônio/sangue , Plutônio/isolamento & purificação , Porosidade , Piridonas/química , Lesões por Radiação/prevenção & controle , Liberação Nociva de Radioativos , Terrorismo , Tório/sangue , Tório/isolamento & purificação , Fatores de Tempo , Urânio/sangue , Urânio/isolamento & purificação
8.
J Hazard Mater ; 182(1-3): 225-31, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20594644

RESUMO

Copper(II) ferrocyanide on mesoporous silica (FC-Cu-EDA-SAMMS) has been evaluated against iron(III) hexacyanoferrate(II) (insoluble Prussian Blue) for removing cesium (Cs(+)) and thallium (Tl(+)) from natural waters and simulated acidic and alkaline wastes. From pH 0.1-7.3, FC-Cu-EDA-SAMMS had greater affinities for Cs and Tl and was less affected by the solution pH, competing cations, and matrices. SAMMS also outperformed Prussian Blue in terms of adsorption capacities (e.g., 21.7 versus 2.6 mg Cs/g in acidic waste stimulant (pH 1.1), 28.3 versus 5.8 mg Tl/g in seawater), and rate (e.g., over 95 wt% of Cs was removed from seawater after 2 min with SAMMS, while only 75 wt% was removed with Prussian Blue). SAMMS also had higher stability (e.g., 2.5-13-fold less Fe dissolved from 2 to 24 h of contact time). In addition to environmental applications, SAMMS has great potential to be used as orally administered drug for limiting the absorption of radioactive Cs and toxic Tl in gastrointestinal tract.


Assuntos
Césio/isolamento & purificação , Ferrocianetos/química , Dióxido de Silício/química , Tálio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Termodinâmica
9.
Environ Sci Technol ; 44(8): 3073-8, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20345133

RESUMO

Phosphate was captured from aqueous solutions by cationic metal-EDA complexes anchored inside mesoporous silica MCM-41 supports (Cu(II)-EDA-SAMMS and Fe(III)-EDA-SAMMS). Fe-EDA-SAMMS was more effective at capturing phosphate than the Cu-EDA-SAMMS and was further studied for matrix effects (e.g., pH, ionic strength, and competing anions) and sorption performance (e.g., capacity and rate). The adsorption of phosphate was highly pH dependent; it increased with increasing pH from 1.0 to 6.5, and decreased above pH 6.5. The adsorption was affected by high ionic strength (0.1 M of NaCl). In the presence of 1000-fold molar excess of chloride and nitrate anions, phosphate removal by Fe-EDA-SAMMS was not affected. Slight, moderate and large impacts were seen with bicarbonate, sulfate, and citrate anions, respectively. The phosphate adsorption data on Fe-EDA-SAMMS agreed well with the Langmuir model with the estimated maximum capacity of 43.3 mg/g. The material displayed rapid sorption rate (99% of phosphate removal within 1 min) and lowering the phosphate content to approximately 10 microg/L of phosphorus, which is lower than the EPA's established freshwater contaminant level for phosphorus (20 microg/L).


Assuntos
Nanopartículas , Fosfatos/isolamento & purificação , Adsorção , Ânions , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Termodinâmica
10.
ACS Appl Mater Interfaces ; 2(10): 2749-58, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20939537

RESUMO

Surface-functionalized nanoporous silica, often referred to as self-assembled monolayers on mesoporous supports (SAMMS), has previously demonstrated the ability to serve as very effective heavy metal sorbents in a range of aquatic and environmental systems, suggesting that they may be advantageously utilized for biomedical applications such as chelation therapy. Herein we evaluate surface chemistries for heavy metal capture from biological fluids, various facets of the materials' biocompatibility, and the suitability of these materials as potential therapeutics. Of the materials tested, thiol-functionalized SAMMS proved most capable of removing selected heavy metals from biological solutions (i.e., blood, urine, etc.) Consequentially, thiol-functionalized SAMMS was further analyzed to assess the material's performance under a number of different biologically relevant conditions (i.e., variable pH and ionic strength) to gauge any potentially negative effects resulting from interaction with the sorbent, such as cellular toxicity or the removal of essential minerals. Additionally, cellular uptake studies demonstrated no cell membrane permeation by the silica-based materials generally highlighting their ability to remain cellularly inert and thus nontoxic. The results show that organic ligand functionalized nanoporous silica could be a valuable material for a range of detoxification therapies and potentially other biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Sangue , Teste de Materiais/métodos , Metais Pesados/química , Dióxido de Silício/química , Urina/química , Adsorção , Células CACO-2 , Humanos , Porosidade
11.
J Hazard Mater ; 168(2-3): 1233-8, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19345006

RESUMO

The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 microg/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning.


Assuntos
Água Doce/química , Elementos da Série dos Lantanídeos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Diálise , Concentração de Íons de Hidrogênio , Cinética
12.
Langmuir ; 25(9): 4900-6, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19256464

RESUMO

The development of more efficient and environmentally benign methods for the synthesis and manipulation of nanomaterials has been a major focus of research among the scientific community. Supercritical (ScFs) and near-critical fluids (NcFs) offer numerous advantages over conventional solvents for these purposes. Among them, ScFs and NcFs offer dramatic reductions in the volume of organic waste typically generated during advanced material processes with the feasibility of changing a number of physicochemical properties by discrete variations in solvent pressure or temperature. In this work, we study the dispersibility of gold nanocrystals with a 3.7 nm core size stabilized by different ligand shells in NcF ethane and propane over a wide range of densities by fine-tuning the pressure of these fluids. Dispersibility vs density plots are obtained by following the variation in the surface plasmon resonance (SPR) absorption spectra of the nanoparticles. To understand the results obtained in this study, three models are briefly discussed: the total interaction theory, the sedimentation coefficient equation, and the Chrastil method. The dispersibility and behavior of the nanocrystals with variations in fluid density are strongly dependent on the surface chemistry of the nanocrystal and the solvent employed. A correlation between measured dispersibility values and calculated sedimentation coefficients was observed in both compressed solvents. In addition, we successfully applied the Chrastil equation to predict and describe the dispersibility of gold nanocrystals with different shells as a function of density, determining that the reason for the high stabilities of some of the nanocrystal dispersions is the strong solvent-nanocrystal interactions. While NcF propane showed higher nanocrystal dispersibilities, using NcF ethane led to improved tunability of nanoparticle dispersions formed in the pressure range studied. Therefore, with a judicious selection of the fluid, NcFs seem to offer a remarkable advantage over conventional solvents for manipulation of nanomaterials, which could be applied to transport, purification, and separation of nanocrystals.

13.
Environ Sci Technol ; 41(14): 5114-9, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17711232

RESUMO

We have shown that superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) are an effective sorbent material for toxic soft metals such as Hg, Ag, Pb, Cd, and Tl, which effectively bind to the DMSA ligands and for As, which binds to the iron oxide lattices. The nanoparticles are highly dispersible and stable in solutions, have a large surface area (114 m2/g), and have a high functional group content (1.8 mmol thiols/g). They are attracted to a magnetic field and can be separated from solution within a minute with a 1.2 T magnet. The chemical affinity, capacity, kinetics, and stability of the magnetic nanoparticles were compared to those of conventional resin based sorbents (GT-73), activated carbon, and nanoporous silica (SAMMS) of similar surface chemistries in river water, groundwater, seawater, and human blood and plasma. DMSA-Fe3O4 had a capacity of 227 mg of Hg/g, a 30-fold larger value than GT-73. The nanoparticles removed 99 wt% of 1 mg/L Pb within a minute, while it took over 10 and 120 min for Chelex-100 and GT-73 to remove 96% of Pb.


Assuntos
Metais Pesados/isolamento & purificação , Nanopartículas , Compostos de Sulfidrila/química , Concentração de Íons de Hidrogênio , Cinética , Succímero/química , Propriedades de Superfície , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA