Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mikrochim Acta ; 186(7): 426, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31187248

RESUMO

Nucleic acid lateral flow assays (NALFA) are often performed with gold nanoparticles. These are typically associated with ligand-labeled PCR amplicons via affinity interactions of adsorbed/conjugated proteins. Otherwise, they are conjugated to specific ssDNA sequences that hybridize to the target sequence. To avoid the need to generate ssDNA and to reduce the costs associated with primer labeling and antibody use, NALFA assays were developed that allow the direct detection of PCR amplicons using conjugates of a DNA binding protein with carbon nanoparticles (CNPs). The target gene encoding 16S ribosomal RNA of Escherichia coli was amplified by PCR using a single fluorophore-labeled forward primer and a reverse primer extended with the binding sequence of the bacteriophage lambda Cro repressor protein. Three different detection approaches were evaluated: (a) scCro/CNPs conjugate (black color), (b) HRP-scCro enzyme conjugate (red color), and (c) HRP-scCro/CNPs conjugate for dual color development. The limits of detection were between 6.9 and 10.4 ng of PCR product for all three approaches. These correspond to 3.0 to 4.5 × 103 CFU·mL-1. The single-step scCro/CNP approach proved to be the fastest one to perform and gave no false-positive signals. It also showed a broad dynamic range even though the signal intensities were lower compared to the enzyme-amplified tests. However, the latter ones produced some background signal. In our perception, the application of scCro in lateral flow assays to bind dsDNA appears to be an excellent alternative to the use of small tags that have to be chemically linked to synthetic primers. Finally, the approach is generic because any primer sequence can be extended with the specific scCro binding sequence. Graphical abstract Schematic presentation of the lateral flow-based fluorometric detection of DNA amplicons using conjugates of scCro DNA binding protein with (A) carbon nanoparticles, (B) HRP and (C) HRP and carbon nanoparticles.


Assuntos
DNA Bacteriano/análise , Proteínas de Ligação a DNA/química , Nanopartículas/química , Reação em Cadeia da Polimerase/métodos , Armoracia/enzimologia , Bacteriófago lambda/química , Carbono/química , Escherichia coli O157/química , Peroxidase do Rábano Silvestre/química , Limite de Detecção , Testes Imediatos , RNA Ribossômico 16S/genética , Proteínas Repressoras/química , Proteínas Virais Reguladoras e Acessórias/química
2.
Anal Bioanal Chem ; 402(2): 593-600, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21904801

RESUMO

Carbon nanoparticles (CNPs) labeled with reporter molecules can serve as signaling labels in rapid diagnostic assays as an alternative to gold, colored latex, silica, quantum dots, or up-converting phosphor nanoparticles. Detailed here is the preparation of biomolecule-labeled CNPs and examples of their use as a versatile label. CNPs can be loaded with a range of biomolecules, such as DNA, antibodies, and proteins (e.g., neutravidin or a fusion protein of neutravidin with an enzyme), and the resulting conjugates can be used to detect analytes of high or low molecular mass.


Assuntos
Carbono/química , Testes Diagnósticos de Rotina/métodos , Imunoensaio/métodos , Nanopartículas/química , Coloração e Rotulagem/métodos , Animais , Humanos
3.
Food Chem ; 351: 129311, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33636533

RESUMO

A competitive lateral flow immunoassay using amorphous carbon nanoparticles (CNPs) and non-immunoglobulin antigen has been developed for the rapid detection of adulteration of cow's milk with buffalo's milk. Purified polyclonal antibodies against a specific buffalo's milk protein fraction were conjugated to CNPs and sprayed on a conjugate pad. The test line consisted of buffalo's skimmed milk proteins (1.6 µg/cm), while the control line contained anti-rabbit antibodies raised in goat (0.5 µg/cm). In the test procedure milk sample is mixed with 100 mM borate buffer (pH 8.8 containing 1% BSA and 0.05% Tween 20) and pipetted onto the sample-cum-conjugate pad. A black/grey test line can be observed if the sample is free from buffalo's milk. The sensitivity of the test i.e. no visible test line is 5% adulteration of cow's milk with buffalo's milk. The test has applicability at the milk receiving stations and can be applied to heated milk samples.


Assuntos
Contaminação de Alimentos/análise , Imunoensaio/métodos , Leite/química , Animais , Búfalos , Carbono , Bovinos , Feminino , Nanopartículas/química
4.
Front Microbiol ; 11: 1355, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714297

RESUMO

Escherichia coli strains carrying Shiga toxins 1 and 2 (stx 1 and stx 2), intimin (eae), and hemolysin (ehxA) production genes were found in grass shoot, rhizosphere soil, and stable manure samples from a small-scale cattle farm located at the center of Netherlands, using cultivation-dependent and -independent microbiological detection techniques. Pasture land with grazing heifers in the first year of sampling in 2014 and without grazing cattle in 2015 was physically separated from the stable that housed rose calves during both years. Manure from the stable was applied to pasture via injection into soil once per year in early spring. Among a variety of 35 phylogenetic distinctly related E. coli strains, one large group consisting of 21 closely resembling E. coli O150:H2 (18), O98:H21 (2), and O84:H2 (1) strains, all belonging to phylogenetic group B1 and carrying all screened virulence traits, was found present on grass shoots (10), rhizosphere soil (3), and stable manure (8) in 2014, but not anymore in 2015 when grazing heifers were absent. Presence and absence of these strains, obtained via enrichments, were confirmed via molecular detection using PCR-NALFIA in all ecosystems in both years. We propose that this group of Shiga toxin-producing E. coli phylogenetic group B1 strains was originally introduced via stable manure injection into the pasture. Upon grazing, these potential pathogens proliferated in the intestinal track systems of the heifers resulting in defecation with higher loads of the STEC strain onto the grass cover. The STEC strain was further smeared over the field via the hooves of the heifers resulting in augmentation of the potential pathogen in the pasture in 2014, whereas in 2015, in the absence of heifers, no augmentation occurred and only a more diverse group of potentially mild virulent E. coli phylogenetic group A and B1 strains, indigenous to pasture plants, remained present. Via this model, it was postulated that human pathogens can circulate between plants and farm animals, using the plant as an alternative ecosystem. These data indicate that grazed pasture must be considered as a potential carrier of human pathogenic E. coli strains and possibly also of other pathogens.

5.
Biosensors (Basel) ; 8(4)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558252

RESUMO

Lateral Flow Immunoassays (LFIAs) allow for rapid, low-cost, screening of many biomolecules such as food allergens. Despite being classified as rapid tests, many LFIAs take 10⁻20 min to complete. For a really high-speed LFIA, it is necessary to assess antibody association kinetics. By using a label-free optical technique such as Surface Plasmon Resonance (SPR), it is possible to screen crude monoclonal antibody (mAb) preparations for their association rates against a target. Herein, we describe an SPR-based method for screening and selecting crude anti-hazelnut antibodies based on their relative association rates, cross reactivity and sandwich pairing capabilities, for subsequent application in a rapid ligand binding assay. Thanks to the SPR selection process, only the fast mAb (F-50-6B12) and the slow (S-50-5H9) mAb needed purification for labelling with carbon nanoparticles to exploit high-speed LFIA prototypes. The kinetics observed in SPR were reflected in LFIA, with the test line appearing within 30 s, almost two times faster when F-50-6B12 was used, compared with S-50-5H9. Additionally, the LFIAs have demonstrated their future applicability to real life samples by detecting hazelnut in the sub-ppm range in a cookie matrix. Finally, these LFIAs not only provide a qualitative result when read visually, but also generate semi-quantitative data when exploiting freely downloadable smartphone apps.


Assuntos
Anticorpos Monoclonais/análise , Corylus/imunologia , Ressonância de Plasmônio de Superfície/métodos , Antígenos de Plantas/metabolismo , Carbono/química , Hipersensibilidade Alimentar/diagnóstico , Humanos , Imunoensaio , Limite de Detecção , Nanopartículas
6.
Bionanoscience ; 7(4): 718-726, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29214121

RESUMO

Rapid and quantitative prostate-specific antigen (PSA) biomarker detection would be beneficial to cancer diagnostics, improving early detection and therefore increasing chances of survival. Nanoparticle-based detection is routinely used in one-step nitrocellulose-based lateral flow (LF) immunoassays; however, it is well established within the scientific diagnostic community that LF technology lacks sensitivity for measuring biomarkers, such as prostate-specific antigen (PSA). A trend in point-of-care (POC) protein biomarker quantitation is the miniaturization of immunoassays in microfluidic devices. This work aimed at testing the feasibility of carbon and gold nanoparticles as immunoassay labels for PSA detection with cost-effective optical detection in a novel microfluidic POC platform called microcapillary film (MCF), consisting of a parallel array of fluoropolymer microcapillaries with 200-µm internal diameter. With neutravidin-coated carbon, nanoparticles were able to quantify an immobilized biotinylated monoclonal antibody (coating solution from 10 to 40 µg/ml) and PSA was successfully quantified in a sandwich assay using silver-enhanced gold nanoparticles and a flatbed scanner; yet, the dynamic range was limited to 10-100 ng/ml. Although direct optical detection of PSA without enzymatic amplification or fluorophores is possible and technically appealing for the simplified fluidics and signal scanning setups involved, ultimately, the binding of a thin layer of nanoparticles onto the wall of transparent microcapillaries is not sufficient to cause a significant drop on the optical colorimetric signal. Future studies will explore the use of fluorescence nanoparticles.

7.
J AOAC Int ; 87(1): 68-77, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15084089

RESUMO

An interlaboratory study was conducted for the validation of 3 methods for the detection of all verotoxin-producing Escherichia coli (VTEC) in foods. The methods were a multi-analyte 1-step lateral flow immunoassay (LFIA) for detection of E. coli O157 and verotoxin (VT); an enzyme-linked immunosorbent assay targeted against VT1, VT2, and VT2c (VT-ELISA); and a polymerase chain reaction (PCR) method for detection of VT genes (VT-PCR). Aliquots (25 g or 25 mL) of 4 food types (raw minced [ground] beef, unpasteurized milk, unpasteurized apple juice [cider], and salami) were individually inoculated with low numbers (<9 to 375 cells/25 g) of 6 test strains of E. coli (serogroups O26, O103, O111, O145, and O157) with differing VT-producing capabilities. Five replicates for each test strain and 5 uninoculated samples were prepared for each food type. Fourteen participating laboratories analyzed samples using the LFIA, 9 analyzed the samples by ELISA, and 9 by PCR. The LFIA for O157 and VT had a specificity (correct identification of negative samples) of 92 and 94%, respectively, and a sensitivity (correct identification of positive samples) of 94 and 55%, respectively. The VT-ELISA and VT-PCR had a specificity of 98 and 99%, respectively, and a sensitivity of 89 and 72%, respectively.


Assuntos
Escherichia coli/química , Escherichia coli/metabolismo , Microbiologia de Alimentos , Toxinas Shiga/análise , Toxinas Shiga/biossíntese , Animais , Bebidas/análise , Contagem de Colônia Microbiana , Ensaio de Imunoadsorção Enzimática , Escherichia coli O157/química , Imunoensaio , Malus/química , Carne/análise , Carne/microbiologia , Leite/química , Leite/microbiologia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Front Microbiol ; 5: 104, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688484

RESUMO

Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh) vegetables, sprouts, and occasionally fruits made clear that these pathogens are not only transmitted to humans via the "classical" routes of meat, eggs, and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure), water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA