Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 162(3): 527-39, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232223

RESUMO

About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies.


Assuntos
Evolução Biológica , Hordeum/fisiologia , Dispersão de Sementes , Sequência de Aminoácidos , Hordeum/anatomia & histologia , Hordeum/genética , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência
2.
Nature ; 620(7975): 830-838, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532937

RESUMO

Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.


Assuntos
Produção Agrícola , Genoma de Planta , Genômica , Triticum , Triticum/classificação , Triticum/genética , Produção Agrícola/história , História Antiga , Sequenciamento Completo do Genoma , Introgressão Genética , Hibridização Genética , Pão/história , Genoma de Planta/genética , Centrômero/genética
3.
PLoS Genet ; 20(1): e1011087, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190412

RESUMO

Plant cell growth involves coordination of numerous processes and signaling cascades among the different cellular compartments to concomitantly enlarge the protoplast and the surrounding cell wall. The cell wall integrity-sensing process involves the extracellular LRX (LRR-Extensin) proteins that bind RALF (Rapid ALkalinization Factor) peptide hormones and, in vegetative tissues, interact with the transmembrane receptor kinase FERONIA (FER). This LRX/RALF/FER signaling module influences cell wall composition and regulates cell growth. The numerous proteins involved in or influenced by this module are beginning to be characterized. In a genetic screen, mutations in Apyrase 7 (APY7) were identified to suppress growth defects observed in lrx1 and fer mutants. APY7 encodes a Golgi-localized NTP-diphosphohydrolase, but opposed to other apyrases of Arabidopsis, APY7 revealed to be a negative regulator of cell growth. APY7 modulates the growth-inhibiting effect of RALF1, influences the cell wall architecture and -composition, and alters the pH of the extracellular matrix, all of which affect cell growth. Together, this study reveals a function of APY7 in cell wall formation and cell growth that is connected to growth processes influenced by the LRX/RALF/FER signaling module.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Apirase/genética , Apirase/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo
4.
PLoS Genet ; 20(3): e1011186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483976

RESUMO

Egg activation, representing the critical oocyte-to-embryo transition, provokes meiosis completion, modification of the vitelline membrane to prevent polyspermy, and translation of maternally provided mRNAs. This transition is triggered by a calcium signal induced by spermatozoon fertilization in most animal species, but not in insects. In Drosophila melanogaster, mature oocytes remain arrested at metaphase-I of meiosis and the calcium-dependent activation occurs while the oocyte moves through the genital tract. Here, we discovered that the oenocytes of fruitfly females are required for egg activation. Oenocytes, cells specialized in lipid-metabolism, are located beneath the abdominal cuticle. In adult flies, they synthesize the fatty acids (FAs) that are the precursors of cuticular hydrocarbons (CHCs), including pheromones. The oenocyte-targeted knockdown of a set of FA-anabolic enzymes, involved in very-long-chain fatty acid (VLCFA) synthesis, leads to a defect in egg activation. Given that some but not all of the identified enzymes are required for CHC/pheromone biogenesis, this putative VLCFA-dependent remote control may rely on an as-yet unidentified CHC or may function in parallel to CHC biogenesis. Additionally, we discovered that the most posterior ventral oenocyte cluster is in close proximity to the uterus. Since oocytes dissected from females deficient in this FA-anabolic pathway can be activated in vitro, this regulatory loop likely operates upstream of the calcium trigger. To our knowledge, our findings provide the first evidence that a physiological extra-genital signal remotely controls egg activation. Moreover, our study highlights a potential metabolic link between pheromone-mediated partner recognition and egg activation.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Feminino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Cálcio/metabolismo , Fertilização , Oócitos/metabolismo , Feromônios/genética , Feromônios/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(30): e2108808119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35857869

RESUMO

Introgressions of chromosomal segments from related species into wheat are important sources of resistance against fungal diseases. The durability and effectiveness of introgressed resistance genes upon agricultural deployment is highly variable-a phenomenon that remains poorly understood, as the corresponding fungal avirulence genes are largely unknown. Until its breakdown, the Pm17 resistance gene introgressed from rye to wheat provided broad resistance against powdery mildew (Blumeria graminis). Here, we used quantitative trait locus (QTL) mapping to identify the corresponding wheat mildew avirulence effector AvrPm17. It is encoded by two paralogous genes that exhibit signatures of reoccurring gene conversion events and are members of a mildew sublineage specific effector cluster. Extensive haplovariant mining in wheat mildew and related sublineages identified several ancient virulent AvrPm17 variants that were present as standing genetic variation in wheat powdery mildew prior to the Pm17 introgression, thereby paving the way for the rapid breakdown of the Pm17 resistance. QTL mapping in mildew identified a second genetic component likely corresponding to an additional resistance gene present on the 1AL.1RS translocation carrying Pm17. This gene remained previously undetected due to suppressed recombination within the introgressed rye chromosomal segment. We conclude that the initial effectiveness of 1AL.1RS was based on simultaneous introgression of two genetically linked resistance genes. Our results demonstrate the relevance of pathogen-based genetic approaches to disentangling complex resistance loci in wheat. We propose that identification and monitoring of avirulence gene diversity in pathogen populations become an integral part of introgression breeding to ensure effective and durable resistance in wheat.


Assuntos
Resistência à Doença , Introgressão Genética , Doenças das Plantas , Secale , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Secale/genética , Secale/microbiologia , Triticum/genética , Triticum/microbiologia
6.
Mol Plant Microbe Interact ; 37(3): 264-276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37934013

RESUMO

Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal wheat pathogen. Some wheat genotypes contain powdery mildew resistance (Pm) genes encoding immune receptors that recognize specific fungal-secreted effector proteins, defined as avirulence (Avr) factors. Identifying Avr factors is vital for understanding the mechanisms, functioning, and durability of wheat resistance. Here, we present AvrXpose, an approach to identify Avr genes in Bgt by generating gain-of-virulence mutants on Pm genes. We first identified six Bgt mutants with gain of virulence on Pm3b and Pm3c. They all had point mutations, deletions or insertions of transposable elements within the corresponding AvrPm3b2/c2 gene or its promoter region. We further selected six mutants on Pm3a, aiming to identify the yet unknown AvrPm3a3 recognized by Pm3a, in addition to the previously described AvrPm3a2/f2. Surprisingly, Pm3a virulence in the obtained mutants was always accompanied by an additional gain of virulence on the unrelated tandem kinase resistance gene WTK4. No virulence toward 11 additional R genes tested was observed, indicating that the gain of virulence was specific for Pm3a and WTK4. Several independently obtained Pm3a-WTK4 mutants have mutations in Bgt-646, a gene encoding a putative, nonsecreted ankyrin repeat-containing protein. Gene expression analysis suggests that Bgt-646 regulates a subset of effector genes. We conclude that Bgt-646 is a common factor required for avirulence on both a specific nucleotide-binding leucine-rich repeat and a WTK immune receptor. Our findings suggest that, beyond effectors, another type of pathogen protein can control the race-specific interaction between powdery mildew and wheat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiologia , Mutação/genética , Mutagênese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética
7.
Mol Plant Microbe Interact ; 37(7): 545-551, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38551853

RESUMO

Small RNAs (sRNAs) are involved in gene silencing in multiple ways, including through cross-kingdom transfers from parasites to their hosts. Little is known about the evolutionary mechanisms enabling eukaryotic microbes to evolve functional mimics of host small regulatory RNAs. Here, we describe the identification and functional characterization of SINE_sRNA1, an sRNA family derived from highly abundant short interspersed nuclear element (SINE) retrotransposons in the genome of the wheat powdery mildew pathogen. SINE_sRNA1 is encoded by a sequence motif that is conserved in multiple SINE families and corresponds to a functional plant microRNA (miRNA) mimic targeting Tae_AP1, a wheat gene encoding an aspartic protease only found in monocots. Tae_AP1 has a novel function enhancing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), thereby contributing to the cross activation of plant defenses. We conclude that SINE_sRNA1 and Tae_AP1 are functional innovations, suggesting the contribution of transposons to the evolutionary arms race between a parasite and its host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Doenças das Plantas , Imunidade Vegetal , Triticum , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Ascomicetos/patogenicidade , Ascomicetos/genética , Ascomicetos/fisiologia , Imunidade Vegetal/genética , Interações Hospedeiro-Patógeno/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , RNA de Plantas/genética , Elementos de DNA Transponíveis/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Sequência Conservada/genética , Sequência de Bases
8.
Plant Cell ; 33(6): 1888-1906, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33710295

RESUMO

Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hordeum/genética , Biologia Computacional/métodos , DNA Intergênico , Genoma de Planta , Anotação de Sequência Molecular , Retroelementos , Análise de Sequência de DNA , Sequências Repetidas Terminais
9.
Theor Appl Genet ; 137(10): 236, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340575

RESUMO

KEY MESSAGE: This study highlights the agronomic potential of rare introgressions, as demonstrated by a major QTL for powdery mildew resistance on chromosome 7D. It further shows evidence for inter-homoeologue recombination in wheat. Agriculturally important genes are often introgressed into crops from closely related donor species or landraces. The gene pool of hexaploid bread wheat (Triticum aestivum) is known to contain numerous such "alien" introgressions. Recently established high-quality reference genome sequences allow prediction of the size, frequency and identity of introgressed chromosome regions. Here, we characterise chromosomal introgressions in bread wheat using exome capture data from the WHEALBI collection. We identified 24,981 putative introgression segments of at least 2 Mb across 434 wheat accessions. Detailed study of the most frequent introgressions identified T. timopheevii or its close relatives as a frequent donor species. Importantly, 118 introgressions of at least 10 Mb were exclusive to single wheat accessions, revealing that large populations need to be studied to assess the total diversity of the wheat pangenome. In one case, a 14 Mb introgression in chromosome 7D, exclusive to cultivar Pamukale, was shown by QTL mapping to harbour a recessive powdery mildew resistance gene. We identified multiple events where distal chromosomal segments of one subgenome were duplicated in the genome and replaced the homoeologous segment in another subgenome. We propose that these examples are the results of inter-homoeologue recombination. Our study produced an extensive catalogue of the wheat introgression landscape, providing a resource for wheat breeding. Of note, the finding that the wheat gene pool contains numerous rare, but potentially important introgressions and chromosomal rearrangements has implications for future breeding.


Assuntos
Cromossomos de Plantas , Resistência à Doença , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/microbiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Introgressão Genética , Mapeamento Cromossômico , Melhoramento Vegetal , Recombinação Genética
10.
Nature ; 544(7651): 427-433, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28447635

RESUMO

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Núcleo Celular/genética , Centrômero/genética , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Variação Genética , Genômica , Haplótipos/genética , Meiose/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sementes/genética
11.
Nature ; 551(7681): 498-502, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29143815

RESUMO

Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.


Assuntos
Genoma de Planta , Filogenia , Poaceae/genética , Triticum/genética , Mapeamento Cromossômico , Diploide , Evolução Molecular , Duplicação Gênica , Genes de Plantas/genética , Genômica/normas , Poaceae/classificação , Recombinação Genética/genética , Análise de Sequência de DNA/normas , Triticum/classificação
12.
Plant J ; 106(2): 526-535, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33533097

RESUMO

Northern corn leaf blight, caused by the fungal pathogen Setosphaeria turcica (anamorph Exserohilum turcicum), is one of the most devastating foliar diseases of maize (Zea mays). Four genes Ht1, Ht2, Ht3 and Htn1 represent the major sources of genetic resistance against the hemibiotrophic fungus S. turcica. Differential maize lines containing these genes also form the basis to classify S. turcica races. Here, we show that Ht2 and Ht3 are identical and allelic to the previously cloned Htn1 gene. Using a map-based cloning approach and Targeting Induced Local Lesions in Genomes (TILLING), we demonstrate that Ht2/Ht3 is an allele of the wall-associated receptor-like kinase gene ZmWAK-RLK1. The ZmWAK-RLK1 variants encoded by Htn1 and Ht2/Ht3 differ by multiple amino acid polymorphisms that particularly affect the putative extracellular domain. A diversity analysis in maize revealed the presence of dozens of ZmWAK-RLK1 alleles. Ht2, Ht3 and Htn1 have been described over decades as independent resistance loci with different race spectra and resistance responses. Our work demonstrates that these three genes are allelic, which has major implications for northern corn leaf blight resistance breeding and nomenclature of S. turcica pathotypes. We hypothesize that genetic background effects have confounded the classical description of these disease resistance genes in the past.


Assuntos
Ascomicetos , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Zea mays/imunologia , Alelos , Ascomicetos/imunologia , Mapeamento Cromossômico , Fosfotransferases/genética , Fosfotransferases/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Zea mays/genética , Zea mays/microbiologia
13.
Mol Biol Evol ; 37(3): 839-848, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730193

RESUMO

Plant genomes have evolved several evolutionary mechanisms to tolerate and make use of transposable elements (TEs). Of these, transposon domestication into cis-regulatory and microRNA (miRNA) sequences is proposed to contribute to abiotic/biotic stress adaptation in plants. The wheat genome is derived at 85% from TEs, and contains thousands of miniature inverted-repeat transposable elements (MITEs), whose sequences are particularly prone for domestication into miRNA precursors. In this study, we investigate the contribution of TEs to the wheat small RNA immune response to the lineage-specific, obligate powdery mildew pathogen. We show that MITEs of the Mariner superfamily contribute the largest diversity of miRNAs to the wheat immune response. In particular, MITE precursors of miRNAs are wide-spread over the wheat genome, and highly conserved copies are found in the Lr34 and QPm.tut-4A mildew resistance loci. Our work suggests that transposon domestication is an important evolutionary force driving miRNA functional innovation in wheat immunity.


Assuntos
Elementos de DNA Transponíveis , MicroRNAs/genética , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Adaptação Biológica , Resistência à Doença , Domesticação , Evolução Molecular , Dosagem de Genes , Variação Genética , RNA de Plantas/genética , Triticum/genética , Triticum/microbiologia
14.
Plant Cell Physiol ; 62(1): 8-27, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33244607

RESUMO

Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.


Assuntos
Resistência à Doença/genética , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Genoma de Planta/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Citogenética , Ásia Oriental , Flores/genética , Fusarium , Genes de Plantas/fisiologia , Estudos de Associação Genética , Variação Genética/genética , Variação Genética/fisiologia , Genoma de Planta/fisiologia , Genótipo , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Triticum/crescimento & desenvolvimento , Triticum/imunologia , Triticum/fisiologia
15.
Plant J ; 98(6): 961-974, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021020

RESUMO

Phylogenetically related groups of species contain lineage-specific genes that exhibit no sequence similarity to any genes outside the lineage. We describe here that the Jekyll gene, required for sexual reproduction, exists in two much diverged allelic variants, Jek1 and Jek3. Despite low similarity, the Jek1 and Jek3 proteins share identical signal peptides, conserved cysteine positions and direct repeats. The Jek1/Jek3 sequences are located at the same chromosomal locus and inherited in a monogenic Mendelian fashion. Jek3 has a similar expression as Jek1 and complements the Jek1 function in Jek1-deficient plants. Jek1 and Jek3 allelic variants were almost equally distributed in a collection of 485 wild and domesticated barley accessions. All domesticated barleys harboring the Jek1 allele belong to single haplotype J1-H1 indicating a genetic bottleneck during domestication. Domesticated barleys harboring the Jek3 allele consisted of three haplotypes. Jekyll-like sequences were found only in species of the closely related tribes Bromeae and Triticeae but not in other Poaceae. Non-invasive magnetic resonance imaging revealed intrinsic grain structure in Triticeae and Bromeae, associated with the Jekyll function. The emergence of Jekyll suggests its role in the separation of the Bromeae and Triticeae lineages within the Poaceae and identifies the Jekyll genes as lineage-specific.


Assuntos
Variação Genética , Proteínas de Plantas/genética , Poaceae/genética , Alelos , Sequência de Aminoácidos , Evolução Biológica , Geografia , Haplótipos , Hordeum/citologia , Hordeum/genética , Imageamento por Ressonância Magnética , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Poaceae/citologia , Reprodução , Sementes/citologia , Sementes/genética , Alinhamento de Sequência , Especificidade da Espécie , Triticum/citologia , Triticum/genética
16.
BMC Evol Biol ; 19(1): 66, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819112

RESUMO

BACKGROUND: ß-Amylases (BAMs) are a multigene family of glucan hydrolytic enzymes playing a key role not only for plant biology but also for many industrial applications, such as the malting process in the brewing and distilling industries. BAMs have been extensively studied in Arabidopsis thaliana where they show a surprising level of complexity in terms of specialization within the different isoforms as well as regulatory functions played by at least three catalytically inactive members. Despite the importance of BAMs and the fact that multiple BAM proteins are also present in other angiosperms, little is known about their phylogenetic history or functional relationship. RESULTS: Here, we examined 961 ß-amylase sequences from 136 different algae and land plant species, including 66 sequenced genomes and many transcriptomes. The extraordinary number and the diversity of organisms examined allowed us to reconstruct the main patterns of ß-amylase evolution in land plants. We identified eight distinct clades in angiosperms, which results from extensive gene duplications and sub- or neo-functionalization. We discovered a novel clade of BAM, absent in Arabidopsis, which we called BAM10. BAM10 emerged before the radiation of seed plants and has the feature of an inactive enzyme. Furthermore, we report that BAM4 - an important protein regulating Arabidopsis starch metabolism - is absent in many relevant starch-accumulating crop species, suggesting that starch degradation may be differently regulated between species. CONCLUSIONS: BAM proteins originated sometime more than 400 million years ago and expanded together with the differentiation of plants into organisms of increasing complexity. Our phylogenetic analyses provide essential insights for future functional studies of this important class of storage glucan hydrolases and regulatory proteins.


Assuntos
Embriófitas/enzimologia , Evolução Molecular , Proteínas de Plantas/genética , beta-Amilase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Embriófitas/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/fisiologia , beta-Amilase/fisiologia
17.
New Phytol ; 221(4): 2176-2189, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30388298

RESUMO

Blumeria graminis f. sp. tritici (B.g. tritici) is the causal agent of the wheat powdery mildew disease. The highly fragmented B.g. tritici genome available so far has prevented a systematic analysis of effector genes that are known to be involved in host adaptation. To study the diversity and evolution of effector genes we produced a chromosome-scale assembly of the B.g. tritici genome. The genome assembly and annotation was achieved by combining long-read sequencing with high-density genetic mapping, bacterial artificial chromosome fingerprinting and transcriptomics. We found that the 166.6 Mb B.g. tritici genome encodes 844 candidate effector genes, over 40% more than previously reported. Candidate effector genes have characteristic local genomic organization such as gene clustering and enrichment for recombination-active regions and certain transposable element families. A large group of 412 candidate effector genes shows high plasticity in terms of copy number variation in a global set of 36 isolates and of transcription levels. Our data suggest that copy number variation and transcriptional flexibility are the main drivers for adaptation in B.g. tritici. The high repeat content may play a role in providing a genomic environment that allows rapid evolution of effector genes with selection as the driving force.


Assuntos
Ascomicetos/genética , Cromossomos Fúngicos/genética , Genoma Fúngico , Triticum/microbiologia , Mapeamento Cromossômico , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Família Multigênica , Polimorfismo Genético , Recombinação Genética/genética , Transcrição Gênica
18.
J Exp Bot ; 70(8): 2313-2323, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753668

RESUMO

The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucosiltransferases/genética , Fosfatidilinositol 3-Quinases , Proteínas de Arabidopsis/metabolismo , Leucina/biossíntese , Mutação , Organogênese Vegetal , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
19.
Nature ; 496(7443): 91-5, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23535592

RESUMO

About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.


Assuntos
Adaptação Fisiológica/genética , Genoma de Planta/genética , Poaceae/genética , Triticum/genética , Brachypodium/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , Resistência à Doença/genética , Genes de Plantas/genética , Hordeum/genética , Dados de Sequência Molecular , Doenças das Plantas , Poliploidia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Triticum/fisiologia
20.
Mol Plant Microbe Interact ; 31(4): 420-431, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29090630

RESUMO

The fungus Zymoseptoria tritici causes septoria tritici blotch (STB) on wheat, an important disease globally and the most damaging wheat disease in Europe. Despite the global significance of STB, the molecular basis of wheat defense against Z. tritici is poorly understood. Here, we use a comparative transcriptomic study to investigate how wheat responds to infection by four distinct strains of Z. tritici. We examined the response of wheat across the entire infection cycle, identifying both shared responses to the four strains and strain-specific responses. We found that the early asymptomatic phase is characterized by strong upregulation of genes encoding receptor-like kinases and pathogenesis-related proteins, indicating the onset of a defense response. We also identified genes that were differentially expressed among the four fungal strains, including genes related to defense. Genes involved in senescence were induced during both the asymptomatic phase and at late stages of infection, suggesting manipulation of senescence processes by both the plant and the pathogen. Our findings illustrate the need, when identifying important genes affecting disease resistance in plants, to include multiple pathogen strains.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/genética , Triticum/genética , Triticum/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Fatores de Tempo , Triticum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA