Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(44): 9314-9325, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33090807

RESUMO

An efficient basis representation of time-dependent wavefunctions is essential for theoretical studies of high-dimensional molecular systems exhibiting large-amplitude motion. For fully coupled anharmonic systems, the complexity of a general wavefunction scales exponentially with the system size; therefore, for practical reasons, it is desirable to adapt the basis to the time-dependent wavefunction at hand. Often times on this quest for a minimal basis representation, time-dependent Gaussians are employed, in part because of their localization in both configuration and momentum spaces and also because of their direct connection to classical and semiclassical dynamics, guiding the evolution of the basis function parameters. In this work, the quantum-trajectory guided adaptable Gaussian (QTAG) bases method [ J. Chem. Theory Comput. 2020, 16, 18-34] is generalized to include correlated, i.e., non-factorizable, basis functions, and the performance of the QTAG dynamics is assessed on benchmark system/bath tunneling models of up to 20 dimensions. For the popular choice of initial conditions describing tunneling between the reactant/product wells, the minimal "semiclassical" description of the bath modes using essentially a single multidimensional basis function combined with the multi-Gaussian representation of the tunneling mode is shown to capture the dominant features of dynamics in a highly efficient manner.

2.
J Phys Chem B ; 127(47): 10129-10141, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37972315

RESUMO

Polymers incorporating cobaltocenium groups have received attention as promising components of anion-exchange membranes (AEMs), exhibiting a good balance of chemical stability and high ionic conductivity. In this work, we analyze the hydroxide diffusion in the presence of cobaltocenium cations in an aqueous environment based on the molecular dynamics of model systems confined in one dimension to mimic the AEM channels. In order to describe the proton hopping mechanism, the forces are obtained from the electronic structure computed at the density-functional tight-binding level. We find that the hydroxide diffusion depends on the channel size, modulation of the electrostatic interactions by the solvation shell, and its rearrangement ability. Hydroxide diffusion proceeds via both the vehicular and structural diffusion mechanisms with the latter playing a larger role at low diffusion coefficients. The highest diffusion coefficient is observed under moderate water densities (around half the density of liquid water) when there are enough water molecules to form the solvation shell, reducing the electrostatic interaction between ions, yet there is enough space for the water rearrangements during the proton hopping. The effects of cobaltocenium separation, orientation, chemical modifications, and the role of nuclear quantum effects are also discussed.

3.
J Chem Theory Comput ; 16(1): 18-34, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31800241

RESUMO

The computational cost of describing a general quantum system fully coupled by anharmonic interactions scales exponentially with the system size. Thus, an efficient basis representation of wave functions is essential, and when it comes to the large-amplitude motion of high-dimensional systems, the dynamic bases of Gaussian functions are often employed. The time dependence of such bases is determined from the variational principle or from classical dynamics; the former is challenging in implementation due to singular matrices, while the latter may not cover the configuration space relevant to quantum dynamics. Here we describe a method using Quantum Trajectory-guided Adaptable Gaussian (QTAG) bases "tuned"-including the basis position, phase, and width-to the wave function evolution, thanks to the continuity of the probability density in the course of the quantum trajectory dynamics. Thus, an efficient basis in configuration space is generated, bypassing the variational equations on the parameters of the Gaussians. We also propose a time propagator with basis transformation by projections which lends efficiency and stability to the QTAG dynamics, as demonstrated on standard tests and the ammonia inversion model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA