Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 476(7359): 214-9, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21833088

RESUMO

Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.


Assuntos
Predisposição Genética para Doença/genética , Imunidade Celular/imunologia , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Alelos , Diferenciação Celular/imunologia , Europa (Continente)/etnologia , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Antígenos HLA-A/genética , Antígenos HLA-DR/genética , Cadeias HLA-DRB1 , Humanos , Imunidade Celular/genética , Complexo Principal de Histocompatibilidade/genética , Polimorfismo de Nucleotídeo Único/genética , Tamanho da Amostra , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia
2.
Nature ; 463(7283): 893-8, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20164919

RESUMO

The cancer genome is moulded by the dual processes of somatic mutation and selection. Homozygous deletions in cancer genomes occur over recessive cancer genes, where they can confer selective growth advantage, and over fragile sites, where they are thought to reflect an increased local rate of DNA breakage. However, most homozygous deletions in cancer genomes are unexplained. Here we identified 2,428 somatic homozygous deletions in 746 cancer cell lines. These overlie 11% of protein-coding genes that, therefore, are not mandatory for survival of human cells. We derived structural signatures that distinguish between homozygous deletions over recessive cancer genes and fragile sites. Application to clusters of unexplained homozygous deletions suggests that many are in regions of inherent fragility, whereas a small subset overlies recessive cancer genes. The results illustrate how structural signatures can be used to distinguish between the influences of mutation and selection in cancer genomes. The extensive copy number, genotyping, sequence and expression data available for this large series of publicly available cancer cell lines renders them informative reagents for future studies of cancer biology and drug discovery.


Assuntos
Sítios Frágeis do Cromossomo/genética , Deleção de Genes , Genes Neoplásicos/genética , Genes Recessivos/genética , Genoma Humano/genética , Homozigoto , Neoplasias/genética , Seleção Genética/genética , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Dosagem de Genes/genética , Humanos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento Físico do Cromossomo , Reprodutibilidade dos Testes
3.
Nat Genet ; 39(9): 1127-33, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704778

RESUMO

Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Linhagem Celular Transformada , Códon sem Sentido , Análise Mutacional de DNA , Saúde da Família , Feminino , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Dados de Sequência Molecular , Linhagem , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Síndrome
4.
Nat Genet ; 37(6): 590-2, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15908952

RESUMO

We examined the coding sequence of 518 protein kinases, approximately 1.3 Mb of DNA per sample, in 25 breast cancers. In many tumors, we detected no somatic mutations. But a few had numerous somatic mutations with distinctive patterns indicative of either a mutator phenotype or a past exposure.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Mutação , Proteínas Quinases/genética , Idoso , Análise Mutacional de DNA , Feminino , Humanos , Família Multigênica
5.
Nature ; 446(7132): 153-8, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17344846

RESUMO

Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.


Assuntos
Genes Neoplásicos/genética , Genoma Humano/genética , Genômica , Mutação/genética , Neoplasias/genética , Sequência de Aminoácidos , Análise Mutacional de DNA , Humanos , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Quinases/química , Proteínas Quinases/genética
6.
Biostatistics ; 11(1): 164-75, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19837654

RESUMO

High-throughput oligonucleotide microarrays are commonly employed to investigate genetic disease, including cancer. The algorithms employed to extract genotypes and copy number variation function optimally for diploid genomes usually associated with inherited disease. However, cancer genomes are aneuploid in nature leading to systematic errors when using these techniques. We introduce a preprocessing transformation and hidden Markov model algorithm bespoke to cancer. This produces genotype classification, specification of regions of loss of heterozygosity, and absolute allelic copy number segmentation. Accurate prediction is demonstrated with a combination of independent experimental techniques. These methods are exemplified with affymetrix genome-wide SNP6.0 data from 755 cancer cell lines, enabling inference upon a number of features of biological interest. These data and the coded algorithm are freely available for download.


Assuntos
Algoritmos , Alelos , Variações do Número de Cópias de DNA/genética , Testes Genéticos , Modelos Estatísticos , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Aneuploidia , Teorema de Bayes , Viés , Linhagem Celular Tumoral , Genes Supressores de Tumor , Genótipo , Humanos , Internet , Perda de Heterozigosidade/genética , Cadeias de Markov , Neoplasias/diagnóstico , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
7.
Genes Chromosomes Cancer ; 49(8): 711-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20544845

RESUMO

To identify a novel amplified cancer gene a systematic screen of 975 human cancer DNA samples, 750 cell lines and 225 primary tumors, using the Affymetrix 10K SNP microarray was undertaken. The screen identified 193 amplicons. A previously uncharacterized amplicon located on 6p21.2 whose 1 Mb minimal common amplified region contained eight genes (GLO1, DNAH8, GLP1R, C6orf64, KCNK5, KCNK17, KCNK16, and C6orf102) was further investigated to determine which gene(s) are the biological targets of this amplicon. Real time quantitative PCR (qPCR) analysis of all amplicon 6p21.2 genes in 618 human cancer cell lines identified GLO1, encoding glyoxalase 1, to be the most frequently amplified gene [twofold or greater amplification in 8.4% (49/536) of cancers]. Also the association between amplification and overexpression was greatest for GLO1. RNAi knockdown of GLO1 had the greatest and most consistent impact on cell accumulation and apoptosis. Cell lines with GLO1 amplification were more sensitive to inhibition of GLO1 by bromobenzylglutathione cyclopentyl diester (BBGC). Subsequent qPCR of 520 primary tumor samples identified twofold and greater amplification of GLO1 in 8/37 (22%) of breast, 12/71 (17%) of sarcomas, 6/53 (11.3%) of nonsmall cell lung, 2/23 (8.7%) of bladder, 6/93 (6.5%) of renal and 5/83 (6%) of gastric cancers. Amplification of GLO1 was rare in colon cancer (1/35) and glioma (1/94). Collectively the results indicate that GLO1 is at least one of the targets of gene amplification on 6p21.2 and may represent a useful target for therapy in cancers with GLO1 amplification.


Assuntos
Biomarcadores Tumorais/genética , Amplificação de Genes , Lactoilglutationa Liase/genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único/genética , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Cromossomos Humanos Par 6/genética , Perfilação da Expressão Gênica , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
8.
Nature ; 431(7008): 525-6, 2004 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15457249

RESUMO

The protein-kinase family is the most frequently mutated gene family found in human cancer and faulty kinase enzymes are being investigated as promising targets for the design of antitumour therapies. We have sequenced the gene encoding the transmembrane protein tyrosine kinase ERBB2 (also known as HER2 or Neu) from 120 primary lung tumours and identified 4% that have mutations within the kinase domain; in the adenocarcinoma subtype of lung cancer, 10% of cases had mutations. ERBB2 inhibitors, which have so far proved to be ineffective in treating lung cancer, should now be clinically re-evaluated in the specific subset of patients with lung cancer whose tumours carry ERBB2 mutations.


Assuntos
Neoplasias Pulmonares/genética , Mutação/genética , Receptor ErbB-2/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Análise Mutacional de DNA , Ativação Enzimática , Receptores ErbB/química , Receptores ErbB/genética , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/genética , Estrutura Terciária de Proteína , Quinazolinas/uso terapêutico , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo
9.
Cancer Res ; 66(8): 3987-91, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16618716

RESUMO

Malignant gliomas have a very poor prognosis. The current standard of care for these cancers consists of extended adjuvant treatment with the alkylating agent temozolomide after surgical resection and radiotherapy. Although a statistically significant increase in survival has been reported with this regimen, nearly all gliomas recur and become insensitive to further treatment with this class of agents. We sequenced 500 kb of genomic DNA corresponding to the kinase domains of 518 protein kinases in each of nine gliomas. Large numbers of somatic mutations were observed in two gliomas recurrent after alkylating agent treatment. The pattern of mutations in these cases showed strong similarity to that induced by alkylating agents in experimental systems. Further investigation revealed inactivating somatic mutations of the mismatch repair gene MSH6 in each case. We propose that inactivating somatic mutations of MSH6 confer resistance to alkylating agents in gliomas in vivo and concurrently unleash accelerated mutagenesis in resistant clones as a consequence of continued exposure to alkylating agents in the presence of defective mismatch repair. The evidence therefore suggests that when MSH6 is inactivated in gliomas, alkylating agents convert from induction of tumor cell death to promotion of neoplastic progression. These observations highlight the potential of large scale sequencing for revealing and elucidating mutagenic processes operative in individual human cancers.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Dacarbazina/análogos & derivados , Glioma/genética , Mutação , Recidiva Local de Neoplasia/genética , Idoso , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Dacarbazina/uso terapêutico , Feminino , Glioma/tratamento farmacológico , Glioma/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/enzimologia , Proteínas Quinases/genética , Temozolomida
10.
Cancer Res ; 65(17): 7591-5, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16140923

RESUMO

Protein kinases are frequently mutated in human cancer and inhibitors of mutant protein kinases have proven to be effective anticancer drugs. We screened the coding sequences of 518 protein kinases (approximately 1.3 Mb of DNA per sample) for somatic mutations in 26 primary lung neoplasms and seven lung cancer cell lines. One hundred eighty-eight somatic mutations were detected in 141 genes. Of these, 35 were synonymous (silent) changes. This result indicates that most of the 188 mutations were "passenger" mutations that are not causally implicated in oncogenesis. However, an excess of approximately 40 nonsynonymous substitutions compared with that expected by chance (P = 0.07) suggests that some nonsynonymous mutations have been selected and are contributing to oncogenesis. There was considerable variation between individual lung cancers in the number of mutations observed and no mutations were found in lung carcinoids. The mutational spectra of most lung cancers were characterized by a high proportion of C:G > A:T transversions, compatible with the mutagenic effects of tobacco carcinogens. However, one neuroendocrine cancer cell line had a distinctive mutational spectrum reminiscent of UV-induced DNA damage. The results suggest that several mutated protein kinases may be contributing to lung cancer development, but that mutations in each one are infrequent.


Assuntos
Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Mutação , Proteínas Quinases/genética , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Tumor Carcinoide/enzimologia , Tumor Carcinoide/genética , Carcinoma de Células Grandes/enzimologia , Carcinoma de Células Grandes/genética , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Análise Mutacional de DNA , Humanos
11.
Mol Cancer Ther ; 5(11): 2606-12, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17088437

RESUMO

The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. The NCI-60 has been characterized pharmacologically and at the molecular level more extensively than any other set of cell lines. However, no systematic mutation analysis of genes causally implicated in oncogenesis has been reported. This study reports the sequence analysis of 24 known cancer genes in the NCI-60 and an assessment of 4 of the 24 genes for homozygous deletions. One hundred thirty-seven oncogenic mutations were identified in 14 (APC, BRAF, CDKN2, CTNNB1, HRAS, KRAS, NRAS, SMAD4, PIK3CA, PTEN, RB1, STK11, TP53, and VHL) of the 24 genes. All lines have at least one mutation among the cancer genes examined, with most lines (73%) having more than one. Identification of those cancer genes mutated in the NCI-60, in combination with pharmacologic and molecular profiles of the cells, will allow for more informed interpretation of anticancer agent screening and will enhance the use of the NCI-60 cell lines for molecularly targeted screens.


Assuntos
Linhagem Celular Tumoral , Genes Neoplásicos , Mutação , Análise Mutacional de DNA , Éxons , Deleção de Genes , Perfilação da Expressão Gênica , Homozigoto , Humanos , Sítios de Splice de RNA
12.
Science ; 348(6237): 880-6, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999502

RESUMO

How somatic mutations accumulate in normal cells is central to understanding cancer development but is poorly understood. We performed ultradeep sequencing of 74 cancer genes in small (0.8 to 4.7 square millimeters) biopsies of normal skin. Across 234 biopsies of sun-exposed eyelid epidermis from four individuals, the burden of somatic mutations averaged two to six mutations per megabase per cell, similar to that seen in many cancers, and exhibited characteristic signatures of exposure to ultraviolet light. Remarkably, multiple cancer genes are under strong positive selection even in physiologically normal skin, including most of the key drivers of cutaneous squamous cell carcinomas. Positively selected mutations were found in 18 to 32% of normal skin cells at a density of ~140 driver mutations per square centimeter. We observed variability in the driver landscape among individuals and variability in the sizes of clonal expansions across genes. Thus, aged sun-exposed skin is a patchwork of thousands of evolving clones with over a quarter of cells carrying cancer-causing mutations while maintaining the physiological functions of epidermis.


Assuntos
Carcinoma de Células Escamosas/genética , Evolução Clonal , Genes Neoplásicos , Mutação , Seleção Genética , Neoplasias Cutâneas/genética , Carga Tumoral/genética , Carcinoma de Células Escamosas/patologia , Epiderme/metabolismo , Epiderme/patologia , Epiderme/efeitos da radiação , Pálpebras/metabolismo , Pálpebras/patologia , Pálpebras/efeitos da radiação , Humanos , Mutação/genética , Mutação/efeitos da radiação , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Neoplasias Cutâneas/patologia , Carga Tumoral/efeitos da radiação , Raios Ultravioleta
13.
Nat Genet ; 41(5): 535-43, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19377476

RESUMO

Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including SYP, ZNF711 and CASK reported here, confirming the power of this strategy. The study has, however, also highlighted issues confronting whole-genome sequencing screens, including the observation that loss of function of 1% or more of X-chromosome genes is compatible with apparently normal existence.


Assuntos
Cromossomos Humanos X/genética , Éxons/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , Feminino , Variação Genética , Humanos , Masculino , Linhagem
14.
Nat Genet ; 41(5): 521-3, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19330029

RESUMO

Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.


Assuntos
Mutação , Neoplasias/enzimologia , Neoplasias/genética , Oxirredutases N-Desmetilantes/genética , Epigênese Genética , Humanos , Histona Desmetilases com o Domínio Jumonji
15.
Nat Genet ; 40(6): 776-81, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18469813

RESUMO

Epilepsy and mental retardation limited to females (EFMR) is a disorder with an X-linked mode of inheritance and an unusual expression pattern. Disorders arising from mutations on the X chromosome are typically characterized by affected males and unaffected carrier females. In contrast, EFMR spares transmitting males and affects only carrier females. Aided by systematic resequencing of 737 X chromosome genes, we identified different protocadherin 19 (PCDH19) gene mutations in seven families with EFMR. Five mutations resulted in the introduction of a premature termination codon. Study of two of these demonstrated nonsense-mediated decay of PCDH19 mRNA. The two missense mutations were predicted to affect adhesiveness of PCDH19 through impaired calcium binding. PCDH19 is expressed in developing brains of human and mouse and is the first member of the cadherin superfamily to be directly implicated in epilepsy or mental retardation.


Assuntos
Caderinas/genética , Cromossomos Humanos X , Códon sem Sentido/genética , Transtornos Cognitivos/genética , Epilepsia/genética , Impressão Genômica , Mutação de Sentido Incorreto/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Transtornos Cognitivos/patologia , Epilepsia/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Ligados ao Cromossomo X/genética , Humanos , Hibridização In Situ , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Camundongos/embriologia , Linhagem , Fenótipo , Protocaderinas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Pele/metabolismo
16.
Am J Hum Genet ; 80(5): 982-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17436253

RESUMO

We have identified one frameshift mutation, one splice-site mutation, and two missense mutations in highly conserved residues in ZDHHC9 at Xq26.1 in 4 of 250 families with X-linked mental retardation (XLMR). In three of the families, the mental retardation phenotype is associated with a Marfanoid habitus, although none of the affected individuals meets the Ghent criteria for Marfan syndrome. ZDHHC9 is a palmitoyltransferase that catalyzes the posttranslational modification of NRAS and HRAS. The degree of palmitoylation determines the temporal and spatial location of these proteins in the plasma membrane and Golgi complex. The finding of mutations in ZDHHC9 suggests that alterations in the concentrations and cellular distribution of target proteins are sufficient to cause disease. This is the first XLMR gene to be reported that encodes a posttranslational modification enzyme, palmitoyltransferase. Furthermore, now that the first palmitoyltransferase that causes mental retardation has been identified, defects in other palmitoylation transferases become good candidates for causing other mental retardation syndromes.


Assuntos
Aciltransferases/genética , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Deficiência Intelectual Ligada ao Cromossomo X/complicações , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Aciltransferases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , DNA/genética , Feminino , Humanos , Masculino , Síndrome de Marfan/enzimologia , Deficiência Intelectual Ligada ao Cromossomo X/enzimologia , Dados de Sequência Molecular , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos , Proteínas ras/metabolismo
17.
Am J Hum Genet ; 80(2): 345-52, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17236139

RESUMO

We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Culina/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Ubiquitina-Proteína Ligases/genética , Agressão , Sequência de Aminoácidos , Criança , Pré-Escolar , Deformidades do Pé/genética , Cabeça/anormalidades , Humanos , Hipogonadismo/genética , Masculino , Dados de Sequência Molecular , Obesidade/genética , Subunidades Proteicas/genética , Convulsões/genética , Tremor/genética
18.
Am J Hum Genet ; 81(2): 367-74, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17668385

RESUMO

In the course of systematic screening of the X-chromosome coding sequences in 250 families with nonsyndromic X-linked mental retardation (XLMR), two families were identified with truncating mutations in BRWD3, a gene encoding a bromodomain and WD-repeat domain-containing protein. In both families, the mutation segregates with the phenotype in affected males. Affected males have macrocephaly with a prominent forehead, large cupped ears, and mild-to-moderate intellectual disability. No truncating variants were found in 520 control X chromosomes. BRWD3 is therefore a new gene implicated in the etiology of XLMR associated with macrocephaly and may cause disease by altering intracellular signaling pathways affecting cellular proliferation.


Assuntos
Anormalidades Múltiplas/genética , Cabeça/anormalidades , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Fatores de Transcrição/genética , Humanos , Masculino , Linhagem , Alinhamento de Sequência
19.
Genes Chromosomes Cancer ; 45(1): 42-6, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16175573

RESUMO

The protein kinase gene family is the most frequently mutated in human cancer. Previous work has documented activating mutations in the KIT receptor tyrosine kinase in testicular germ-cell tumors (TGCT). To investigate further the potential role of mutated protein kinases in the development of TGCT and to characterize the prevalence and patterns of point mutations in these tumors, we have sequenced the coding exons and splice junctions of the annotated protein kinase family of 518 genes in a series of seven seminomas and six nonseminomas. Our results show a remarkably low mutation frequency, with only a single somatic point mutation, a K277E mutation in the STK10 gene, being identified in a total of more than 15 megabases of sequence analyzed. Sequencing of STK10 in an additional 40 TGCTs revealed no further mutations. Comparative genomic hybridization and LOH analysis using SNP arrays demonstrated that the 13 TGCTs mutationally screened through the 518 protein kinase genes were uniformly aneuploid with consistent chromosomal gains on 12p, 8q, 7, and X and losses on 13q, 18q, 11q, and 4q. Our results do not provide evidence for a mutated protein kinase implicated in the development of TGCT other than KIT. Moreover, they demonstrate that the general prevalence of point mutations in TGCT is low, in contrast to the high frequency of copy number changes.


Assuntos
Neoplasias Embrionárias de Células Germinativas/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Seminoma/genética , Neoplasias Testiculares/genética , Adolescente , Adulto , Aberrações Cromossômicas , Éxons , Dosagem de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Mutação Puntual
20.
Am J Hum Genet ; 79(6): 1119-24, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17186471

RESUMO

In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.


Assuntos
Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Subunidades sigma do Complexo de Proteínas Adaptadoras/metabolismo , Adulto , Criança , Endossomos/metabolismo , Feminino , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/etiologia , Deficiência Intelectual Ligada ao Cromossomo X/psicologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA