Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Phycol ; 59(3): 570-589, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971784

RESUMO

The majority of bacterial antagonists identified to date are active against Microcystis. Therefore, this study aimed to isolate and characterize novel cyanolytic bacterial strains antagonistic against bloom-forming filamentous cyanobacteria. The bacterial strain BG-E isolated from the Bandagiriya Wewa in Sri Lanka was identified as Pseudomonas fluorescens (MZ007859) based on the 16S rRNA gene sequencing. BG-E showed 82% and 73% cyanolytic activity (CA) against Pseudanabaena sp. LW2 (MW288948) and Pseudanabaena lonchoides LW1 (MW288940), respectively, after 10 days of inoculation. The light microscopic images affirmed the complete disintegration in the filamentous structures of the tested Pseudanabaena species. The bacterial cell density of 15% v/v showed the CA with 95% and 89% cell lysis, respectively, in P. lonchoides and Pseudanabaena sp. LW2. Moreover, the results showed that >50% CA could be achieved by 0.100 and 1.00 (OD730 ) cell densities for these same species. The highest CA of the cell-free supernatant of BG-E against P. lonchoides and bacterial culture against Pseudanabaena sp. LW2 illustrated the species-specific mode of action of BG-E. Although BG-E efficiently lysed the tested cyanobacterial species, the results of the MC-biodegradation assay confirmed its inability to degrade MC-LR cyanotoxin. Further, the BG-E strain lacks the mlrABCD gene cluster which is known to be responsible for the enzymatic degradation of MCs. The overall findings highlighted the applicability of P. fluorescens BG-E as a biological controlling agent to terminate blooms of freshwater filamentous cyanobacteria genus Pseudanabaena. The incorporation of cyanotoxin-degrading heterotrophic bacteria is recommended as a means of controlling toxic Pseudanabaena blooms.


Assuntos
Cianobactérias , Microcystis , Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Agentes de Controle Biológico/metabolismo , RNA Ribossômico 16S/genética , Cianobactérias/genética , Microcystis/genética , Água Doce , Toxinas de Cianobactérias
2.
Arch Virol ; 167(4): 1061-1074, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35246732

RESUMO

Yolo Wonder (YW) and Warlock (W), two capsicum cultivars that are susceptible to capsicum chlorosis virus (CaCV), were compared in terms of symptom development, tospovirus accumulation, and host gene expression during the first 12 days post infection (dpi). Temporal expression of selected early CaCV-response genes was used to gain insights into plant-virus interactions and to identify potential targets for CaCV control. Symptoms developed faster in YW during the first seven days of infection, while systemic symptoms were similar in both cultivars at 10 and 12 dpi. CaCV accumulation was higher in YW at 7 dpi despite a lower titre at 3 dpi. At 12 dpi, virus accumulation was similar for both cultivars. Symptom development appears to be correlated to virus accumulation over time for both cultivars. Chalcone synthase (CHS), cytochrome P450 (CYP), and tetraspanin 8-like (TSP8) genes followed a similar expression pattern over time in both cultivars. The thionin gene showed increased expression in CaCV-infected plants at 12 dpi. The WRKY40 gene showed significant differential expression at all time points in YW, but only at 12 dpi in W. The strongest correlation of temporal gene expression and virus titre was seen for CYP, TSP8, thionin, and WRKY40. CHS and CYP may be involved in symptom development, and TSP8 may be involved in virus movement. CHS, CYP, and TSP8 may be good targets for future overexpression or silencing studies to clarify their functions during virus infection and, potentially, for control of CaCV in capsicum.


Assuntos
Anemia Hipocrômica , Capsicum , Vírus de Plantas , Tospovirus , Vírus não Classificados , Capsicum/genética , Doenças das Plantas , Vírus de Plantas/genética , Tospovirus/genética
3.
Ecotoxicol Environ Saf ; 188: 109911, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31722801

RESUMO

Screening of plant species with an ability to grow on contaminated soil is the most critical step in the planning of a phytoremediation program. While flourishing growth of Impatiens balsamina L. and Crotalaria retusa L. has been observed in areas adjacent to automobile service stations in Sri Lanka, no systematic study of their tolerance to used lubricating oil (ULO) contaminated soil has been carried out. Therefore, the aim of the present study was to investigate the comparative responses of I. balsamina L. and C. retusa L. to soil contaminated with ULO. Both species exhibited 100% seed germination in soils treated with 1%-5% w/w ULO. After 120 h exposure, root lengths and biomass of germinated seedlings of both species were significantly (p < 0.05) reduced in all treatments above 3% w/w ULO. The measured growth parameters of plants following 90 d exposure to 0.5-3% w/w ULO, indicated significant (p < 0.05) negative effects on I. balsamina and C. retusa at >1% w/w and >2% w/w ULO, respectively. There were no significant effects on chlorophyll content or root anatomy of either species under any treatments. Therefore, we concluded that I. balsamina can tolerate up to 1% of ULO and C. retusa up to 2% w/w ULO without displaying any negative effects. Comparatively higher biodegradation of ULO in the rhizosphere, root nodule formation, increases in root length and root hair density are all possible strategies for the exhibited higher tolerance of C. retusa. Therefore, the overall results indicate that C. retusa has the greater potential to be used in phytoremediation of ULO contaminated soils. The findings of the present study will be beneficial in planning phytoremediation program for ULO contaminated soil.


Assuntos
Crotalaria/crescimento & desenvolvimento , Impatiens/crescimento & desenvolvimento , Óleo Mineral/toxicidade , Poluentes do Solo/toxicidade , Adaptação Fisiológica , Biodegradação Ambiental , Biomassa , Crotalaria/efeitos dos fármacos , Impatiens/efeitos dos fármacos , Óleo Mineral/análise , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Sri Lanka
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA