Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biodegradation ; 24(2): 179-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22791276

RESUMO

2,4,6-Trinitrotoluene (TNT) is a toxic and persistent explosive compound occurring as a contaminant at numerous sites worldwide. Knowledge of the microbial dynamics driving TNT biodegradation is limited, particularly in native aquifer sediments where it poses a threat to water resources. The purpose of this study was to quantify the effect of organic amendments on anaerobic TNT biodegradation rate and pathway in an enrichment culture obtained from historically contaminated aquifer sediment and to compare the bacterial community dynamics. TNT readily biodegraded in all microcosms, with the highest biodegradation rate obtained under the lactate amended condition followed by ethanol amended and naturally occurring organic matter (extracted from site sediment) amended conditions. Although a reductive pathway of TNT degradation was observed across all conditions, denaturing gradient gel electrophoresis (DGGE) analysis revealed distinct bacterial community compositions. In all microcosms, Gram-negative γ- or ß-Proteobacteria and Gram-positive Negativicutes or Clostridia were observed. A Pseudomonas sp. in particular was observed to be stimulated under all conditions. According to non-metric multidimensional scaling analysis of DGGE profiles, the microcosm communities were most similar to heavily TNT-contaminated field site sediment, relative to moderately and uncontaminated sediments, suggesting that TNT contamination itself is a major driver of microbial community structure. Overall these results provide a new line of evidence of the key bacteria driving TNT degradation in aquifer sediments and their dynamics in response to organic carbon amendment, supporting this approach as a promising technology for stimulating in situ TNT bioremediation in the subsurface.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Água Subterrânea , Trinitrotolueno/metabolismo , Betaproteobacteria/metabolismo , Clostridium/metabolismo , Gammaproteobacteria/metabolismo , Pseudomonas/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Ground Water ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084658

RESUMO

Quantifying the flow rate distribution in a multiple-screen recharge well is relevant to understanding groundwater flow and solute transport behavior in managed aquifer recharge (MAR) operations. In this study, an impeller flowmeter was deployed to measure flow rate distribution in a multiple-screen MAR well under both recharge and pumping conditions screened in the multiple-strata of the Virginia Coastal Plain aquifer system. Preferential flow distribution in the well was observed through the uppermost screens during recharge while flow distribution was more evenly distributed along all screens under pumping conditions. Analysis of flow along individual screens also indicates preferential flow to the upper part of the screen during both recharge and pumping. Comparison of flowmeter results under both recharge and pumping conditions to previous site-specific measurements suggests that the distribution of flow may vary with time, depending on well screen condition and well rehabilitation efforts, and should be monitored over the duration of an MAR project. These results have implications for groundwater quality given that flow distribution in a multiscreen recharge well has profound impact on travel time and on transport modeling if flow is assumed to be steady and consistent under a range of operational conditions.

3.
Environ Sci Technol ; 46(18): 10047-54, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22873644

RESUMO

Mass transfer rate coefficients were quantified by employing an inverse modeling technique to high-resolution aqueous phase concentration data observed following an experimental release of a multicomponent nonaqueous phase liquid (NAPL) at a field site. A solute transport model (SEAM3D) was employed to simulate advective-dispersive transport over time coupled to NAPL dissolution. Model calibration was demonstrated by accurately reproducing the observed breakthrough times and peak concentrations at multiple observation points, observed mass discharge at pumping wells, and the reported mass depletions for three soluble NAPL constituents. Vertically variable NAPL mass transfer coefficients were derived for each constituent using an optimized numerical solute transport model, ranging from 0.082 to 2.0 day(-1) across all constituents. Constituent-specific coefficients showed a positive correlation with liquid-phase diffusion coefficients. Application of a time-varying mass transfer coefficient as NAPL mass depleted showed limited sensitivity during which over 80% of the most soluble NAPL constituent dissolved from the source. Long-term simulation results, calibrated to the experimental data and rendered in terms of mass discharge versus source mass depletion, exhibited multistage behavior.


Assuntos
Água Subterrânea/química , Movimentos da Água , Poluentes da Água/química , Simulação por Computador , Difusão , Modelos Químicos , Porosidade , Solubilidade
4.
Environ Sci Technol ; 46(11): 5782-8, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22574781

RESUMO

A field survey was conducted following the Deepwater Horizon blowout and it was noted that resulting coastal petroleum deposits possessed distinct geometries, ranging from small tar balls to expansive horizontal oil sheets. A subsequent laboratory study evaluated the effect of oil deposit geometry on localized gradients of electron acceptors and microbial community composition, factors that are critical to accurately estimating biodegradation rates. One-dimensional top-flow sand columns with 12-h simulated tidal cycles compared two contrasting geometries (isolated tar "balls" versus horizontal "sheets") relative to an oil-free control. Significant differences in the effluent dissolved oxygen and sulfate concentrations were noted among the columns, indicating presence of anaerobic zones in the oiled columns, particularly in the sheet condition. Furthermore, quantification of genetic markers of terminal electron acceptor and catabolic processes via quantitative polymerase chain reaction of dsrA (sulfate-reduction), mcrA (methanogenesis), and cat23 (oxygenation of aromatics) genes in column cores suggested more extensive anaerobic conditions induced by the sheet relative to the ball geometry. Denaturing gradient gel electrophoresis similarly revealed that distinct gradients of bacterial communities established in response to the different geometries. Thus, petroleum deposit geometry impacts local dominant electron acceptor conditions and may be a key factor for advancing attenuation models and prioritizing cleanup.


Assuntos
Bactérias/metabolismo , Elétrons , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Petróleo/microbiologia , Bactérias/genética , Biodegradação Ambiental , Coleta de Dados , Eletroforese em Gel de Gradiente Desnaturante , Genes Bacterianos/genética , Óleos/análise , Oxigênio/análise , Microbiologia do Solo , Sulfatos/análise , Eliminação de Resíduos Líquidos
5.
J Contam Hydrol ; 251: 104066, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054959

RESUMO

Mixing-dependent reactions occur where groundwater and surface water mix in shallow sediments (hyporheic zone) and can attenuate contaminants along upwelling flowpaths, thus reducing transport to surface water. Here we used MODFLOW/SEAM3D to numerically simulate prior laboratory observations of a mixing-dependent reaction between sodium sulfite (Na2SO3) and dissolved oxygen (DO) to produce sodium sulfate (Na2SO4). This reaction is not common in nature but is used as a surrogate for mixing-dependent DO consuming reactions of environmental significance. We evaluated how location and thickness of mixing zones and reaction product production zones dynamically respond to variations in hydraulic and chemical boundary conditions and reaction kinetic rate. Sensitivity analysis showed that location and thickness of mixing zones and reactant production zones were most sensitive to changes in the balance of hydrologic inflow from groundwater and surface water (inflow ratio). Mixing zone thickness for reactive DO calibrated to experimental data was thinner than that for the "DO tracer" (identical source location and concentration as DO but conservative tracer), indicating that as DO is consumed its mixing zone narrows. The SO4 production zone was consistently thicker than the DO mixing zone. Small changes in mixing/production zone thicknesses were linked to large changes in mass consumed and produced, indicating the potential for simpler field metrics like thickness to act as surrogates for more challenging measurements such as contaminant flux or consumption in monitoring natural attenuation. This study improves understanding of the evolution of hyporheic mixing-dependent reaction zones that occur even under steady state hydraulics, emphasizing their complex controls.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Movimentos da Água , Evolução Química , Água
6.
Ground Water ; 60(5): 668-674, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35302237

RESUMO

The sustainable water initiative for tomorrow (SWIFT) is a 378,000 m3 /day (100 MGD) managed aquifer recharge (MAR) program designed by the Hampton Roads Sanitation District (HRSD) to rehabilitate the Potomac Aquifer System (PAS) in the Coastal Plain of Eastern Virginia. Groundwater is a primary water source in Eastern Virginia with over 93% of reported use derived from the PAS. Starting in May 2018, HRSD has operated a 3780 m3 /day (1.0 MGD) MAR demonstration facility at the SWIFT Research Center (SWIFT-RC) in Suffolk, Virginia. The primary aim of the SWIFT-RC is to demonstrate, at a meaningful scale, the feasibility of MAR using deep well recharge into confined PAS hydrostratigraphic unit. The SWIFT-RC employs advanced water treatment technology to bring secondary effluent from an HRSD wastewater treatment plant to drinking water standards. Lessons learned include the evaluation and selection of a multiple barrier carbon-based treatment system to ensure water quality and maintain geochemical compatibility between MAR water and native groundwater, and the evaluation and selection of aluminum chlorohydrate for stabilizing aquifer clays immediately around the well to accept the fresher recharge water. The distribution of flow in the SWIFT-RC multiscreen recharge well and associated well injectivity were variable with time resulting from changing conditions in the well. Dynamic recharge well performance was quantified through the combined analysis of intrinsic and artificial tracer transport, in situ flowmeter testing, and water level analysis. Monitoring well nests and a depth-discrete sampling system supported a robust sampling plan to analyze chemical transport and attenuation in SWIFT-RC groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Animais , Ovinos , Poluentes Químicos da Água/análise , Qualidade da Água , Poços de Água
7.
J Contam Hydrol ; 244: 103920, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798507

RESUMO

A straightforward, upscaled DNAPL mass dissolution model is developed using relatively simple input consisting of characteristic dimensions and saturations of a DNAPL accumulation. Multiple accumulations are aggregated into a single source zone volume. Physically, the dissolution process is a combination of flow through the mass (advective component) and flow around the mass (dispersive component). The contribution of each component is based on initial characteristic length scales and the average initial saturation. Changes over time with the depletion of mass are captured with a changing relative permeability and a power law relationship for the fraction of initial mass remaining. The utility of the upscaled process model is demonstrated with data from three studies: numerical simulation of multiple pools, two-dimensional test cell experiments with mixed architecture and with heterogeneous soil, and a controlled field study of multicomponent DNAPL release and depletion. Use of the model successfully reproduced the observed multistage mass discharge in each study and illuminated the governing processes. The power law exponent was relatively constant for the various conditions and relative permeability changes were integral to the success. The numerical and experimental studies were run to complete mass depletion which the upscaled model matched. The input parameters are minimal and are found in typical DNAPL source zone characterization data.


Assuntos
Poluentes Químicos da Água , Simulação por Computador , Modelos Teóricos , Solubilidade , Poluentes Químicos da Água/análise
8.
J Contam Hydrol ; 243: 103885, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34488177

RESUMO

Mixing of surface water and groundwater in shallow sediments is important to biogeochemical cycling and contaminant migration, and is often used to define the hyporheic zone. Yet knowledge of mixing processes in hyporheic zones is supported by surprisingly few rigorous lab or field observations, and differ from those in deeper groundwater by presence of enhanced head gradients, sediment heterogeneity, and temporal fluctuations. In a laboratory sediment (sand) tank we photographed a conservative dye to analyze transverse mixing zones between upwelling groundwater and bidirectional hyporheic exchange flows. We then conducted numerical modeling to investigate processes behind observed phenomena and estimate dispersivities. We found that transverse mixing zones were thin (i.e. mixing thickness measured in direction of steepest concentration gradient, δ, less than 5 cm), consistent with a small calibrated transverse dispersivity (~0.1 mm) and prior lab studies conducted at similar scales. In steady-state experiments and simulations, δ and estimated dispersion coefficients increased with the surface water head drop driving exchange flows. Given relatively constant deeper groundwater heads, increased Δh led to increased mixing zone length for both steady-state and transient conditions, indicating larger bedforms or weaker gaining conditions enhance subsurface mixing. However, Peclet number and flux-related dilution index simultaneously increased and decreased, respectively, indicating that enhancement of subsurface advection outpaced that of dispersion. In transient experiments and simulations, δ was greater than for steady-state, probably from temporary addition of longitudinal dispersion. During transient experiments, δ exhibited temporal noise, perhaps due to the mixing zone moving past varying patterns of sediment packing. Our results provide basic knowledge of mixing zone behavior in hyporheic zones with implications for hyporheic zone definitions, solute transport, mixing-dependent reaction, and water quality.


Assuntos
Água Subterrânea , Movimentos da Água , Qualidade da Água
9.
Ground Water ; 52 Suppl 1: 76-89, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24372440

RESUMO

The vulnerability of public supply wells to chlorinated ethene (CE) contamination in part depends on the availability of naturally occurring organic carbon to consume dissolved oxygen (DO) and initiate reductive dechlorination. This was quantified by building a mass balance model of the Kirkwood-Cohansey aquifer, which is widely used for public water supply in New Jersey. This model was built by telescoping a calibrated regional three-dimensional (3D) MODFLOW model to the approximate capture zone of a single public supply well that has a history of CE contamination. This local model was then used to compute a mass balance between dissolved organic carbon (DOC), particulate organic carbon (POC), and adsorbed organic carbon (AOC) that act as electron donors and DO, CEs, ferric iron, and sulfate that act as electron acceptors (EAs) using the Sequential Electron Acceptor Model in three dimensions (SEAM3D) code. SEAM3D was constrained by varying concentrations of DO and DOC entering the aquifer via recharge, varying the bioavailable fraction of POC in aquifer sediments, and comparing observed and simulated vertical concentration profiles of DO and DOC. This procedure suggests that approximately 15% of the POC present in aquifer materials is readily bioavailable. Model simulations indicate that transport of perchloroethene (PCE) and its daughter products trichloroethene (TCE), cis-dichloroethene (cis-DCE), and vinyl chloride (VC) to the public supply well is highly sensitive to the assumed bioavailable fraction of POC, concentrations of DO entering the aquifer with recharge, and the position of simulated PCE source areas in the flow field. The results are less sensitive to assumed concentrations of DOC in aquifer recharge. The mass balance approach used in this study also indicates that hydrodynamic processes such as advective mixing, dispersion, and sorption account for a significant amount of the observed natural attenuation in this system.


Assuntos
Carbono/análise , Etilenos/análise , Hidrocarbonetos Clorados/análise , Modelos Teóricos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , New Jersey
10.
Environ Sci Technol ; 42(7): 2575-81, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18504999

RESUMO

The combined remediation mechanisms of volatilization and biodegradation in the vadose zone were investigated for naphthalene remediation at a creosote-contaminated site where a poplar tree-based phytoremediation system has been installed. Concurrent field and laboratory experiments were conducted to study the transport and biodegradation of naphthalene in the vadose zone. Soil gas sampling showed that more than 90% of the naphthalene vapors were biodegraded aerobically within 5-10 cm above the water table during the summer months. Peak naphthalene soil gas concentrations were observed in the late summer, corresponding with peak naphthalene aqueous concentrations and the minimum saturated zone thickness. An analytical solution was developed for vapor transport where the diffusion coefficient and first-order biodegradation rate vary vertically in two discrete zones. First-order aerobic biodegradation rates in laboratory columns using unsaturated site soil ranged from 5 to 28 days(-1) with a mean rate of 11 days(-1). The observed naphthalene mass flux at the source (3.3-22 microg cm(-2) d(-1)) was enhanced by aerobic biodegradation and was greater than the mean observed flux in the abiotic control column and the maximum theoretical mass flux by factors of 7 and 28, respectively.


Assuntos
Recuperação e Remediação Ambiental/métodos , Naftalenos/metabolismo , Plantas/metabolismo , Cinética , Volatilização
11.
Environ Sci Technol ; 40(17): 5560-6, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16999140

RESUMO

Phytoremediation systems are known to reduce groundwater contamination by at least three major mechanisms: plant uptake, phytovolatilization, and enhanced rhizosphere bioremediation. The potential for such systems to enhance a fourth remediation pathway--direct surface volatilization of contaminants through the subsurface and into the atmosphere-has not yet been investigated in the field. A vertical flux chamber was used to measure direct surface volatilization of naphthalene over nine months at a creosote-contaminated site in Oneida, Tennessee, where a phytoremediation system of poplar trees was installed in 1997. A maximum flux of 23 microg m(-2) h(-1) was measured in August 2004, and naphthalene removal by the direct volatilization pathway is estimated to be 50 g yr(-1) at this site. Results suggest that direct volatilization fluxes are most strongly affected by the groundwater level (thickness of the saturated zone), soil moisture, and changes in atmospheric pressure. At this site, transpiration and canopy interception resulting from the phytoremediation system significantly reduce the saturated thickness, increasing the vertical concentration gradient of naphthalene in the groundwater and thus increasing the upward diffusive flux of naphthalene through the subsurface. The presence of the trees, therefore, promotes direct volatilization into the atmosphere. This research represents the first known measurement of naphthalene attenuation by the direct volatilization pathway.


Assuntos
Poluentes Atmosféricos/metabolismo , Recuperação e Remediação Ambiental/métodos , Naftalenos/metabolismo , Plantas/metabolismo , Poluentes Químicos da Água/metabolismo , Volatilização
12.
Environ Sci Technol ; 39(23): 9317-23, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16382958

RESUMO

Nine push-pull tests (PPTs) were performed to determine in-situ aerobic respiration rates at a creosote-contaminated site and to assess the contribution of hybrid poplar trees to the remediation of polynuclear aromatic hydrocarbons (PAH) in groundwater. PPTs were conducted by injecting a solution containing dissolved oxygen and naphthalene (reactive tracers) with bromide (nonreactive tracer) into wells constructed in a shallow unconfined aquifer. The objective of this study was to determine seasonal variation and spatial differences (contaminated versus uncontaminated areas and treed versus untreed areas) in the rate of consumption of dissolved oxygen. First-order aerobic respiration rates varied from 0.0 (control well) to 1.25 hr(-1), which occurred at a planted area in early summer (June). Rates measured in winter at treed areas were greater by a factor of 3-5 when compared to winter rates determined at nontreed areas of the site. Rates at treed regions were found to increase by over 4 times in summer relative to winter at the same location.


Assuntos
Plantas/metabolismo , Compostos Policíclicos/química , Poluentes Químicos da Água , Biodegradação Ambiental
13.
Environ Sci Technol ; 39(6): 1598-605, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15819215

RESUMO

A seven-year study was conducted to assess the effectiveness of hybrid poplar trees to remediate polycyclic aromatic hydrocarbon (PAH) compounds in soil and groundwater at a creosote-contaminated site. A reduction in the areal extent of the PAH plume was observed in the upper half of the 2-m-thick saturated zone, and PAH concentration levels in the groundwater declined throughout the plume. PAH concentrations began to decline during the period between the third and fourth growing seasons, which coincided with the propagation of the tree roots to the water table region. Remediation was limited to naphthalene and several three-ring PAHs (acenaphthylene and acenaphthene). PAH concentrations in soil and aquifer sediment samples also declined over time; however, levels of four-ring PAHs persisted at the lower depths during the study period. The naphthalene to total PAH concentration ratio in the most contaminated groundwater decreased from >0.90 at the beginning of the second growing season to approximately 0.70 at the end the study. Remediation in the lower region of the saturated zone was limited bythe presence of a 0.3-m-thick layer of creosote present as a dense nonaqueous phase liquid (DNAPL). The nearly steady-state condition of the PAH concentrations observed during the last three years of the study suggests that the effectiveness of the phytoremediation system is limited by the rate of PAH dissolution from the DNAPL source.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Populus/química , Poluentes do Solo/isolamento & purificação , Poluentes do Solo/metabolismo , Poluentes da Água/isolamento & purificação , Poluentes da Água/metabolismo , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/química , Solubilidade
14.
Biodegradation ; 15(6): 435-51, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15563000

RESUMO

A three-dimensional model for the transport and reductive dechlorination of chlorinated ethenes in ground-water systems with variable redox conditions is demonstrated and applied to a pilot test for accelerated natural attenuation of trichloroethene (TCE). The rate and extent of biotransformation of TCE and chlorinated progeny is controlled by the dominant terminal electron accepting process (TEAP) that is simulated over space and time. The solute transport code, Sequential Electron Acceptor Model, 3D-transport, (SEAM3D) which simulates aerobic and sequential anaerobic biodegradation of organic carbon, is modified to implement the equations. Results of a generic model for TCE transport in ground-water systems with different redox conditions demonstrate that the degree of chlorinated ethene attenuation is influenced by background concentrations of aqueous- and solid-phase electron acceptors, but that model results are sensitive to other input parameters (inhibition coefficients, maximum rate of reductive dechlorination, biomass concentrations, and ground-water velocity). Simulation results of enhanced in situ bioremediation using dissolved organic carbon as a reducing agent show that spatial and temporal changes in the dominant TEAP and the subsequent rate of reductive dechlorination are adequately represented with the model. Initial concentrations of Fe(III) and the dechlorinating microbial population influence the simulated time lag observed during the pilot test.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Clorados/metabolismo , Poluentes Químicos da Água/metabolismo , Transporte de Elétrons , Cinética , Modelos Biológicos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA