Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(11): 5076-5082, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37234019

RESUMO

Nanomechanical resonators realized from tensile-strained materials reach ultralow mechanical dissipation in the kHz to MHz frequency range. Tensile-strained crystalline materials that are compatible with epitaxial growth of heterostructures would thereby at the same time allow realizing monolithic free-space optomechanical devices, which benefit from stability, ultrasmall mode volumes, and scalability. In our work, we demonstrate nanomechanical string and trampoline resonators made from tensile-strained InGaP, which is a crystalline material that is epitaxially grown on an AlGaAs heterostructure. We characterize the mechanical properties of suspended InGaP nanostrings, such as anisotropic stress, yield strength, and intrinsic quality factor. We find that the latter degrades over time. We reach mechanical quality factors surpassing 107 at room temperature with a Q·f product as high as 7 × 1011Hz with trampoline-shaped resonators. The trampoline is patterned with a photonic crystal to engineer its out-of-plane reflectivity, desired for efficient signal transduction of mechanical motion to light.

2.
Opt Express ; 31(19): 30212-30226, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710568

RESUMO

Increasing the interaction between light and mechanical resonators is an ongoing endeavor in the field of cavity optomechanics. Optical microcavities allow for boosting the interaction strength through their strong spatial confinement of the optical field. In this work, we follow this approach by realizing a sub-wavelength-long, free-space optomechanical microcavity on-chip fabricated from an (Al,Ga)As heterostructure. A suspended GaAs photonic crystal mirror is acting as a highly reflective mechanical resonator, which together with a distributed Bragg (DBR) reflector forms an optomechanical microcavity. We demonstrate precise control over the microcavity resonance by change of the photonic crystal parameters. We find that the microcavity mode can strongly couple to the transmissive modes of the DBR. The interplay between the microcavity mode and a guided resonance of the photonic crystal modifies the cavity response and results in a stronger dynamical backaction on the mechanical resonator compared to conventional optomechanical dynamics.

3.
Phys Rev Lett ; 114(22): 223601, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26196621

RESUMO

We demonstrate optimal state estimation for a cavity optomechanical system through Kalman filtering. By taking into account nontrivial experimental noise sources, such as colored laser noise and spurious mechanical modes, we implement a realistic state-space model. This allows us to obtain the conditional system state, i.e., conditioned on previous measurements, with a minimal least-squares estimation error. We apply this method to estimate the mechanical state, as well as optomechanical correlations both in the weak and strong coupling regime. The application of the Kalman filter is an important next step for achieving real-time optimal (classical and quantum) control of cavity optomechanical systems.

4.
Adv Mater ; 36(44): e2403155, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39285850

RESUMO

High-quality factor (Qm) mechanical resonators are crucial for applications where low noise and long coherence time are required, as mirror suspensions, quantum cavity optomechanical devices, or nanomechanical sensors. Tensile strain in the material enables the use of dissipation dilution and strain engineering techniques, which increase the mechanical quality factor. These techniques have been employed for high-Qm mechanical resonators made from amorphous materials and, recently, from crystalline materials such as InGaP, SiC, and Si. A strained crystalline film exhibiting substantial piezoelectricity expands the capability of high-Qm nanomechanical resonators to directly utilize electronic degrees of freedom. In this work, nanomechanical resonators with Qm up to 2.9 × 107 made from tensile-strained 290 nm-thick AlN are realized. AlN is an epitaxially-grown crystalline material offering strong piezoelectricity. Nanomechanical resonators that exploit dissipation dilution and strain engineering to reach a Qm × fm-product approaching 1013 Hz at room temperature are demonstrated. A novel resonator geometry is realized, triangline, whose shape follows the Al-N bonds and offers a central pad patterned with a photonic crystal. This allows to reach an optical reflectivity above 80% for efficient coupling to out-of-plane light. The presented results pave the way for quantum optoelectromechanical devices at room temperature based on tensile-strained AlN.

5.
Opt Express ; 21(6): 6707-17, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546052

RESUMO

Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Fótons , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
6.
Nat Commun ; 14(1): 6910, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903787

RESUMO

Transition metal dichalcogenide (TMD) heterobilayers provide a versatile platform to explore unique excitonic physics via the properties of the constituent TMDs and external stimuli. Interlayer excitons (IXs) can form in TMD heterobilayers as delocalized or localized states. However, the localization of IX in different types of potential traps, the emergence of biexcitons in the high-excitation regime, and the impact of potential traps on biexciton formation have remained elusive. In our work, we observe two types of potential traps in a MoSe2/WSe2 heterobilayer, which result in significantly different emission behavior of IXs at different temperatures. We identify the origin of these traps as localized defect states and the moiré potential of the TMD heterobilayer. Furthermore, with strong excitation intensity, a superlinear emission behavior indicates the emergence of interlayer biexcitons, whose formation peaks at a specific temperature. Our work elucidates the different excitation and temperature regimes required for the formation of both localized and delocalized IX and biexcitons and, thus, contributes to a better understanding and application of the rich exciton physics in TMD heterostructures.

7.
Phys Rev Lett ; 107(8): 080504, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21929154

RESUMO

We experimentally demonstrate a general criterion to identify entangled states useful for the estimation of an unknown phase shift with a sensitivity higher than the shot-noise limit. We show how to exploit this entanglement on the examples of a maximum likelihood as well as of a Bayesian phase estimation protocol. Using an entangled four-photon state we achieve a phase sensitivity clearly beyond the shot-noise limit. Our detailed comparison of methods and quantum states for entanglement enhanced metrology reveals the connection between multiparticle entanglement and sub-shot-noise uncertainty, both in a frequentist and in a Bayesian phase estimation setting.

8.
Nanoscale Horiz ; 7(1): 77-84, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34796891

RESUMO

The optical properties of monolayer transition metal dichalcogenides are dominated by tightly-bound excitons. They form at distinct valleys in reciprocal space, and can interact via the valley-exchange coupling, modifying their dispersion considerably. Here, we predict that angle-resolved photoluminescence can be used to probe the changes of the excitonic dispersion. The exchange-coupling leads to a unique angle dependence of the emission intensity for both circularly and linearly-polarised light. We show that these emission characteristics can be strongly tuned by an external magnetic field due to the valley-specific Zeeman-shift. We propose that angle-dependent photoluminescence measurements involving both circular and linear optical polarisation as well as magnetic fields should act as strong verification of the role of valley-exchange coupling on excitonic dispersion and its signatures in optical spectra.

9.
Phys Rev Lett ; 103(2): 020504, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19659191

RESUMO

We report on the experimental observation and characterization of a six-photon entangled Dicke state. We obtain a fidelity as high as 0.654+/-0.024 and prove genuine six-photon entanglement by, amongst others, a two-setting witness yielding -0.422+/-0.148. This state has remarkable properties; e.g., it allows obtaining inequivalent entangled states of a lower qubit number via projective measurements, and it possesses a high entanglement persistency against qubit loss. We characterize the properties of the six-photon Dicke state experimentally by detecting and analyzing the entanglement of a variety of multipartite entangled states.

10.
Phys Rev Lett ; 100(20): 200407, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18518515

RESUMO

The variety of multipartite entangled states enables numerous applications in novel quantum information tasks. In order to compare the suitability of different states from a theoretical point of view, classifications have been introduced. Accordingly, here we derive criteria and demonstrate how to experimentally discriminate an observed state against the ones of certain other classes of multipartite entangled states. Our method, originating in Bell inequalities, adds an important tool for the characterization of multiparty entanglement.

11.
Phys Rev Lett ; 101(26): 260505, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19437629

RESUMO

We report on the direct estimation of concurrence for mixed quantum states. The used method relies on joint measurements on two copies of an entangled state. In the experimental demonstration two polarization-entangled photon pairs emitted from spontaneous parametric down-conversion are analyzed together using a linear optics controlled phase gate. We demonstrate that the measured data, without need for further numerical processing, directly yield reliable estimates, despite experimental imperfections.

12.
Phys Rev Lett ; 101(1): 010503, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18764097

RESUMO

A single linear-optical setup is used to observe an entire family of four-photon entangled states. This approach breaks with the inflexibility of present linear-optical setups usually designed for the observation of a particular multipartite entangled state only. The family includes several prominent entangled states that are known to be highly relevant for quantum information applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA