Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(D1): D226-D231, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36280237

RESUMO

The Nucleic Acid Circular Dichroism Database (NACDDB) is a public repository that archives and freely distributes circular dichroism (CD) and synchrotron radiation CD (SRCD) spectral data about nucleic acids, and the associated experimental metadata, structural models, and links to literature. NACDDB covers CD data for various nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids, and various nucleic acid derivatives. The entries are linked to primary sequence and experimental structural data, as well as to the literature. Additionally, for all entries, 3D structure models are provided. All entries undergo expert validation and curation procedures to ensure completeness, consistency, and quality of the data included. The NACDDB is open for submission of the CD data for nucleic acids. NACDDB is available at: https://genesilico.pl/nacddb/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Ácidos Nucleicos , Dicroísmo Circular , Síncrotrons , Ácidos Nucleicos/química
2.
Nucleic Acids Res ; 50(W1): W90-W98, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35544232

RESUMO

Circular dichroism (CD) spectroscopy is widely used to characterize the secondary structure composition of proteins. To derive accurate and detailed structural information from the CD spectra, we have developed the Beta Structure Selection (BeStSel) method (PNAS, 112, E3095), which can handle the spectral diversity of ß-structured proteins. The BeStSel webserver provides this method with useful accessories to the community with the main goal to analyze single or multiple protein CD spectra. Uniquely, BeStSel provides information on eight secondary structure components including parallel ß-structure and antiparallel ß-sheets with three different groups of twist. It overperforms any available method in accuracy and information content, moreover, it is capable of predicting the protein fold down to the topology/homology level of the CATH classification. A new module of the webserver helps to distinguish intrinsically disordered proteins by their CD spectrum. Secondary structure calculation for uploaded PDB files will help the experimental verification of protein MD and in silico modelling using CD spectroscopy. The server also calculates extinction coefficients from the primary sequence for CD users to determine the accurate protein concentrations which is a prerequisite for reliable secondary structure determination. The BeStSel server can be freely accessed at https://bestsel.elte.hu.


Assuntos
Proteínas Intrinsicamente Desordenadas , Estrutura Secundária de Proteína , Simulação por Computador , Análise Espectral , Dicroísmo Circular
3.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338713

RESUMO

Under specific conditions, some proteins can self-assemble into fibrillar structures called amyloids. Initially, these proteins were associated with neurodegenerative diseases in eucaryotes. Nevertheless, they have now been identified in the three domains of life. In bacteria, they are involved in diverse biological processes and are usually useful for the cell. For this reason, they are classified as "functional amyloids". In this work, we focus our analysis on a bacterial functional amyloid called Hfq. Hfq is a pleiotropic regulator that mediates several aspects of genetic expression, mainly via the use of small noncoding RNAs. Our previous work showed that Hfq amyloid-fibrils interact with membranes. This interaction influences Hfq amyloid structure formation and stability, but the specifics of the lipid on the dynamics of this process is unknown. Here, we show, using spectroscopic methods, how lipids specifically drive and modulate Hfq amyloid assembly or, conversely, its disassembly. The reported effects are discussed in light of the consequences for bacterial cell life.


Assuntos
Amiloide , Pequeno RNA não Traduzido , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Pequeno RNA não Traduzido/genética , Bactérias/metabolismo , Lipídeos , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica
4.
Bioorg Med Chem Lett ; 92: 129376, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328039

RESUMO

Circular dichroism spectroscopy of nucleic acids has been traditionally performed at sample concentrations orders of magnitude lower than what occur in biological systems. While recent work from us demonstrated the flexibility of an adjustable sample cell that allowed for successful recording of CD spectra of an 18- and a 21-mer double stranded DNA sequences at around 1 mM, sample concentrations beyond 1 mM present a challenge for standard benchtop CD spectrometers. In the present work, the synchrotron radiation circular dichroism (SRCD) spectra were recorded for d(CG)9 and a mixed 18-mer double stranded DNA at 1, 5, and 10 mM in 100 mM or 4 M NaCl. SRCD of low molecular weight salmon DNA was also measured at a 10 mg/ml concentration. These results represent the first report of CD spectra of DNA samples measured at concentrations comparable to those found in the nucleus. The results suggest that dsDNA maintain very similar structures at concentrations up to tens of mg/ml, as evident by the very similar CD patterns in this concentration range. Furthermore, the SRCD allowed for the recording of CD patterns of DNA in the far UV region, which is not readily accessible by standard benchtop CD spectropolarimeters. These far UV signals appear to be quite characteristic of DNA structures and are sensitive to sample conditions.


Assuntos
Oligonucleotídeos , Síncrotrons , Dicroísmo Circular , DNA
5.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511182

RESUMO

The possible carrier role of Outer Membrane Vesicles (OMVs) for small regulatory noncoding RNAs (sRNAs) has recently been demonstrated. Nevertheless, to perform their function, these sRNAs usually need a protein cofactor called Hfq. In this work we show, by using a combination of infrared and circular dichroism spectroscopies, that Hfq, after interacting with the inner membrane, can be translocated into the periplasm, and then be exported in OMVs, with the possibility to be bound to sRNAs. Moreover, we provide evidence that Hfq interacts with and is inserted into OMV membranes, suggesting a role for this protein in the release of sRNA outside the vesicle. These findings provide clues to the mechanism of host-bacteria interactions which may not be defined solely by protein-protein and protein-outer membrane contacts, but also by the exchange of RNAs, and in particular sRNAs.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Dicroísmo Circular , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pequeno RNA não Traduzido/genética , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica
6.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959682

RESUMO

Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor produced by some Klebsiella pneumoniae strains, which, under certain conditions, form amyloid fibers, leading to the loss of its antibacterial activity. Although this protein has been characterized as a model functional amyloid, the secondary structure transitions behind its formation, and the possible effect of molecules that inhibit this process, have not been investigated. In this study, we examined the ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid formation. Aggregation kinetics followed by thioflavin T binding were used to monitor amyloid formation in the presence or absence of EGCG. Additionally, synchrotron radiation circular dichroism (SRCD) and transmission electron microscopy (TEM) were used to study the secondary structure, thermal stability, and morphology of microcin E492 fibers. Our results showed that EGCG significantly inhibited the formation of the MccE492 amyloid, resulting in mainly amorphous aggregates and small oligomers. However, these aggregates retained part of the ß-sheet SRCD signal and a high resistance to heat denaturation, suggesting that the aggregation process is sequestered or deviated at some stage but not completely prevented. Thus, EGCG is an interesting inhibitor of the amyloid formation of MccE492 and other bacterial amyloids.


Assuntos
Catequina , Polifenóis , Polifenóis/farmacologia , Chá , Amiloide/química , Proteínas Amiloidogênicas , Catequina/farmacologia , Catequina/química
7.
J Struct Biol ; 214(4): 107912, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283630

RESUMO

The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Tomografia por Raios X , DNA , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética
8.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955871

RESUMO

Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNAs. Previously, we showed that the Hfq C-terminal region forms an amyloid-like structure and that these fibrils interact with membranes. The immediate consequence of this interaction is a disruption of the membrane, but the effect on Hfq structure was unknown. To investigate details of the mechanism of interaction, the present work uses different in vitro biophysical approaches. We show that the Hfq C-terminal region influences membrane integrity and, conversely, that the membrane specifically affects the amyloid assembly. The reported effect of this bacterial master regulator on membrane integrity is discussed in light of the possible consequence on small regulatory RNA-based regulation.


Assuntos
Proteínas de Escherichia coli , RNA Bacteriano , Proteínas Amiloidogênicas/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo
9.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897833

RESUMO

X-ray photoelectron spectroscopy of bovine serum albumin (BSA) in a liquid jet is used to investigate the electronic structure of a solvated protein, yielding insight into charge transfer mechanisms in biological systems in their natural environment. No structural damage was observed in BSA following X-ray photoelectron spectroscopy in a liquid jet sample environment. Carbon and nitrogen atoms in different chemical environments were resolved in the X-ray photoelectron spectra of both solid and solvated BSA. The calculations of charge distributions demonstrate the difficulty of assigning chemical contributions in complex systems in an aqueous environment. The high-resolution X-ray core electron spectra recorded are unchanged upon solvation. A comparison of the valence bands of BSA in both phases is also presented. These bands display a higher sensitivity to solvation effects. The ionization energy of the solvated BSA is determined at 5.7 ± 0.3 eV. Experimental results are compared with theoretical calculations to distinguish the contributions of various molecular components to the electronic structure. This comparison points towards the role of water in hole delocalization in proteins.


Assuntos
Albumina Sérica , Água , Eletrônica , Espectroscopia Fotoeletrônica , Soroalbumina Bovina , Água/química
10.
Biomacromolecules ; 21(9): 3668-3677, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786728

RESUMO

Molecular transport of biomolecules plays a pivotal role in the machinery of life. Yet, this role is poorly understood due the lack of quantitative information. Here, the role and properties of the C-terminal region of Escherichia coli Hfq is reported, involved in controlling the flow of a DNA solution. A combination of experimental methodologies has been used to probe the interaction of Hfq with DNA and to measure the rheological properties of the complex. A physical gel with a temperature reversible elasticity modulus is formed due to the formation of noncovalent cross-links. The mechanical response of the complexes shows that they are inhomogeneous soft solids. Our experiments indicate that the Hfq C-terminal region could contribute to the genome's mechanical response. The reported viscoelasticity of the DNA-protein complex might have implications for cellular processes involving molecular transport of DNA or segments thereof.


Assuntos
Proteínas de Escherichia coli , Fator Proteico 1 do Hospedeiro , DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
11.
Nucleic Acids Res ; 46(W1): W315-W322, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29893907

RESUMO

Circular dichroism (CD) spectroscopy is a widely used method to study the protein secondary structure. However, for decades, the general opinion was that the correct estimation of ß-sheet content is challenging because of the large spectral and structural diversity of ß-sheets. Recently, we showed that the orientation and twisting of ß-sheets account for the observed spectral diversity, and developed a new method to estimate accurately the secondary structure (PNAS, 112, E3095). BeStSel web server provides the Beta Structure Selection method to analyze the CD spectra recorded by conventional or synchrotron radiation CD equipment. Both normalized and measured data can be uploaded to the server either as a single spectrum or series of spectra. The originality of BeStSel is that it carries out a detailed secondary structure analysis providing information on eight secondary structure components including parallel-ß structure and antiparallel ß-sheets with three different groups of twist. Based on these, it predicts the protein fold down to the topology/homology level of the CATH protein fold classification. The server also provides a module to analyze the structures deposited in the PDB for BeStSel secondary structure contents in relation to Dictionary of Secondary Structure of Proteins data. The BeStSel server is freely accessible at http://bestsel.elte.hu.


Assuntos
Internet , Dobramento de Proteína , Estrutura Secundária de Proteína , Software , Algoritmos , Dicroísmo Circular , Bases de Dados de Proteínas , Proteínas/química , Proteínas/genética
12.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630060

RESUMO

The gadolinium-based nanoagent named AGuIX® is a unique radiosensitizer and contrast agent which improves the performance of radiotherapy and medical imaging. Currently tested in clinical trials, AGuIX® is administrated to patients via intravenous injection. The presence of nanoparticles in the blood stream may induce harmful effects due to undesired interactions with blood components. Thus, there is an emerging need to understand the impact of these nanoagents when meeting blood proteins. In this work, the influence of nanoagents on the structure and stability of the most abundant blood protein, human serum albumin, is presented. Synchrotron radiation circular dichroism showed that AGuIX® does not bind to the protein, even at the high ratio of 45 nanoparticles per protein at 3 mg/L. However, it increases the stability of the albumin. Isothermal thermodynamic calorimetry and fluorescence emission spectroscopy demonstrated that the effect is due to preferential hydration processes. Thus, this study confirms that intravenous injection of AGuIX® presents limited risks of perturbing the blood stream. In a wider view, the methodology developed in this work may be applied to rapidly evaluate the impact and risk of other nano-products that could come into contact with the bloodstream.


Assuntos
Meios de Contraste/efeitos adversos , Gadolínio/efeitos adversos , Nanopartículas/efeitos adversos , Albumina Sérica/efeitos dos fármacos , Calorimetria , Dicroísmo Circular , Humanos , Espectrometria de Fluorescência , Testes de Toxicidade
13.
Langmuir ; 34(24): 7180-7191, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29772895

RESUMO

The common view on the amyloid fibril formation is that it is a multistep process that involves many oligomeric intermediate species, which leads to a high degree of polymorphism. This view derives from numerous kinetic studies whose vast majority was carried out with amyloid ß fragments or other pathological amyloidogenic sequences. Yet, it is not clear whether the mechanisms inferred from these studies are universal and also apply to functional amyloids, in particular to peptide hormones which form reversible amyloid structures. In the present work, we study the self-assembly properties of atosiban, a nonapeptide drug, whose sequence is very close to those of the oxytocin and vasopressin hormones. We show that this very soluble peptide consistently self-assembles into 7 nm wide amyloid fibrils above a critical aggregation concentration (2-10 w/w % depending on the buffer conditions). The peptide system is characterized in details, from the monomeric to the assembled form, with osmotic concentration measurements, transmission electron microscopy, small-angle X-ray scattering, infrared and fluorescence spectroscopy, and circular dichroism (CD). We have followed in situ the fibril assembly with fluorescence and synchrotron radiation CD and noticed that the peptide undergoes conformational changes during the process. However, several lines of evidence point toward the association of monomers and dimers into fibrils without passing through oligomeric intermediate species contrary to what is usually reported for pathogenic amyloids. The native ß-hairpin conformation of the monomer could explain the straightforward assembly. The tyrosine stacking is also shown to play an important role.


Assuntos
Amiloide/química , Dicroísmo Circular , Fragmentos de Peptídeos/química , Vasotocina/análogos & derivados , Peptídeos beta-Amiloides/química , Cinética , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Vasotocina/química
14.
Proc Natl Acad Sci U S A ; 112(24): E3095-103, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26038575

RESUMO

Circular dichroism (CD) spectroscopy is a widely used technique for the study of protein structure. Numerous algorithms have been developed for the estimation of the secondary structure composition from the CD spectra. These methods often fail to provide acceptable results on α/ß-mixed or ß-structure-rich proteins. The problem arises from the spectral diversity of ß-structures, which has hitherto been considered as an intrinsic limitation of the technique. The predictions are less reliable for proteins of unusual ß-structures such as membrane proteins, protein aggregates, and amyloid fibrils. Here, we show that the parallel/antiparallel orientation and the twisting of the ß-sheets account for the observed spectral diversity. We have developed a method called ß-structure selection (BeStSel) for the secondary structure estimation that takes into account the twist of ß-structures. This method can reliably distinguish parallel and antiparallel ß-sheets and accurately estimates the secondary structure for a broad range of proteins. Moreover, the secondary structure components applied by the method are characteristic to the protein fold, and thus the fold can be predicted to the level of topology in the CATH classification from a single CD spectrum. By constructing a web server, we offer a general tool for a quick and reliable structure analysis using conventional CD or synchrotron radiation CD (SRCD) spectroscopy for the protein science research community. The method is especially useful when X-ray or NMR techniques fail. Using BeStSel on data collected by SRCD spectroscopy, we investigated the structure of amyloid fibrils of various disease-related proteins and peptides.


Assuntos
Dicroísmo Circular/métodos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas/química , Algoritmos , Peptídeos beta-Amiloides/química , Fenômenos Biofísicos , Dicroísmo Circular/estatística & dados numéricos , Simulação por Computador , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Peptídeos/química , Agregados Proteicos , Microglobulina beta-2/química
15.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3520-3530, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27378459

RESUMO

BACKGROUND: Phagocytes kill ingested microbes by exposure to high concentrations of toxic reactive species generated by NADPH-oxidases. This membrane-bound electron-transferring enzyme is tightly regulated by cellular signaling cascades. So far, molecular and biophysical studies of the NADPH-oxidase were performed over limited temperature ranges, which weaken our understanding of immune response or inflammatory events. In this work, we have inspected the influence of temperature and lipid membrane properties on the NADPH-oxidase activity using a system free of cell complexity. METHODS: We have extended the experimental conditions of the accepted model for NADPH-oxidase activity, the so-called cell-free assay, to a large temperature range (10-40°C) using different membrane compositions (subcellular compartments or liposomes). RESULTS: A remarkable increase of superoxide production rate was observed with rising temperature. Synchrotron radiation circular dichroism data showed that this is not correlated with protein secondary structure changes. When lipid bilayers are in fluid phase, Arrhenius plots of the oxidase activity showed linear relationships with small activation energy (Ea), while when in solid phase, high Ea was found. The sterol content modulates kinetic and thermodynamic parameters. CONCLUSION: High temperature promotes the rate of superoxide production. The key element of this enhancement is related to membrane properties such as thickness and viscosity and not to protein structural changes. Membrane viscosity that can be driven by sterols is a paramount parameter of Ea of NADPH oxidase activity. The membrane bilayer state modulated by its sterol content may be considered locally as an enzyme regulator. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Assuntos
Membrana Celular/metabolismo , Fenômenos Químicos , NADPH Oxidases/metabolismo , Ácido Araquidônico/metabolismo , Dicroísmo Circular , Retículo Endoplasmático/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Pichia , Estabilidade Proteica , Proteolipídeos/metabolismo , Proteínas Recombinantes/metabolismo , Esteróis/metabolismo , Síncrotrons , Temperatura
16.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt B): 3693-3699, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27155578

RESUMO

BACKGROUND: The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). METHODS: In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. RESULTS: The aggregation behavior of 45µl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. CONCLUSIONS: Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. GENERAL SIGNIFICANCE: This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.


Assuntos
Acústica , Dicroísmo Circular , Proteínas/análise , Espalhamento a Baixo Ângulo , Síncrotrons , Animais , Galinhas , Cavalos , Muramidase/análise , Mioglobina/análise , Difração de Nêutrons , Soluções , Análise Espectral , Água/química
17.
Phys Chem Chem Phys ; 19(28): 18303-18310, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28676874

RESUMO

The two enantiomers of cryptophane-111 (1), which possesses the most simplified chemical structure of cryptophane derivatives and exhibits the highest binding constant for xenon encapsulation in organic solution, were separated by HPLC using chiral stationary phases. The chiroptical properties of [CD(+)254]-1 and [CD(-)254]-1 were determined in CH2Cl2 and CHCl3 solutions by polarimetry, electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and Raman optical activity (ROA) experiments and were compared to those of cryptophane-222 (2) derivative. Synchroton Radiation Circular Dichroism (SRCD) spectra were also recorded for the two enantiomers of 1 to investigate low-lying excited states in the 1Bb region. Time-dependent density functional theory (TDDFT) calculations of the ECD and SRCD as well as DFT calculations of the VCD and ROA allowed the [CD(-)254]-PP-1 and [CD(+)254]-MM-1 absolute configurations for 1 in CH2Cl2 and CHCl3 solutions. Similar configurations were found in the solid state from X-ray crystals of the two enantiomers but the chemical structures are significantly different from the one calculated in solution. In addition, the chiroptical properties of the two enantiomers of 1 were independent of the nature of the solvent, which is significantly different to that observed for cryptophane-222 compound. The lack of solvent molecule (CH2Cl2 or CHCl3) within the cavity of 1 can explain this different behaviour between 1 and 2. Finally, we show in this article that the encapsulation of xenon by 1 can be evidenced by ROA following the symmetric breathing mode of the cryptophane-111 skeleton at 150 cm-1.

18.
Biophys J ; 111(1): 69-78, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27410735

RESUMO

Using synchrotron radiation-based circular dichroism spectroscopy, we found that the DNA damage response induces an increase of α-helix structure and a decrease of ß-strand and turn structures in histone H2A-H2B extracted from x-irradiated human HeLa cells. The structural alterations correspond to the assumption that an average of eight amino acid residues form new α-helix structures at 310 K. We propose the structural transition from ß-strand and turn structures to an α-helix structure in H2A-H2B as a novel, to our knowledge, process involved in the DNA damage response.


Assuntos
Dano ao DNA , Histonas/química , Células HeLa , Histonas/metabolismo , Humanos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Temperatura , Ubiquitinação
19.
Biochim Biophys Acta ; 1828(8): 1881-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23603223

RESUMO

In cells, from bacteria to plants or mammals, lipids are stored in natural emulsions called oil bodies (OBs). This organelle is surrounded by a phospholipid monolayer which is thought to contain integral proteins involved in its stabilization. The insertion and fold of these proteins into the phospholipid monolayer are poorly understood. In seed OBs, the most abundant integral proteins are oleosins, which contain a 70-residue central hydrophobic domain. The secondary structure of solubilized oleosins varies greatly from mainly alpha helices to a predominantly beta sheets depending on the detergent used. To study the fold of integral membrane proteins inserted in a cellular OB environment, S3 protein, the major Arabidopsis thaliana seed oleosin, was targeted to Saccharomyces cerevisiae OBs. The diameter of purified yeast OBs harboring S3 or S3 fused with the Green Fluorescent Protein (GFP) was smaller and more homogeneous than plant OBs. Comparison of the secondary structure of S3 and S3-GFP was used to validate the structure of folded S3. Circular dichroism using synchrotron radiation indicated that S3 and S3-GFP in yeast OBs contain mainly beta secondary structures. While yeast OBs are chemically different to A. thaliana seed OBs, this approach allowed the secondary structure of S3 in OB particles to be determined for the first time.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Membrana Celular/química , Óleos/química , Dobramento de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Dicroísmo Circular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Immunoblotting , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Óleos/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética
20.
Methods Mol Biol ; 2741: 399-416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217665

RESUMO

Useful structural information about the conformation of nucleic acids can be quickly acquired by circular and linear dichroism (CD/LD) spectroscopy. These techniques, rely on the differential absorption of polarised light and are indeed extremely sensitive to subtle changes in the structure of chiral biomolecules. Many CD analyses of DNA or DNA:protein complexes have been conducted with substantial data acquisitions. Conversely, CD RNA analysis are still scarce, despite the fact that RNA plays a wide cellular function. This chapter seeks to introduce the reader to the use of circular, linear dichroism and in particular the use of Synchrotron Radiation for such samples. The use of these techniques on small noncoding RNA (sRNA) will be exemplified by analyzing changes in base stacking and/or helical parameters for the understanding of sRNA structure and function, especially by translating the dynamics of RNA:RNA annealing but also to access RNA stability or RNA:RNA alignment. The effect of RNA remodeling proteins will also be addressed. These analyses are especially useful to decipher the mechanisms by which sRNA will adopt the proper conformation thanks to the action of proteins such as Hfq or ProQ in the regulation of the expression of their target mRNAs.


Assuntos
Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , DNA , Dicroísmo Circular , Fator Proteico 1 do Hospedeiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA