RESUMO
Even though transcription factors (TFs) are central players of gene regulation and have been extensively studied, their regulatory trans-activation domains (tADs) often remain unknown and a systematic functional characterization of tADs is lacking. Here, we present a novel high-throughput approach tAD-seq to functionally test thousands of candidate tADs from different TFs in parallel. The tADs we identify by pooled screening validate in individual luciferase assays, whereas neutral regions do not. Interestingly, the tADs are found at arbitrary positions within the TF sequences and can contain amino acid (e.g., glutamine) repeat regions or overlap structured domains, including helix-loop-helix domains that are typically annotated as DNA-binding. We also identified tADs in the non-native reading frames, confirming that random sequences can function as tADs, albeit weakly. The identification of tADs as short protein sequences sufficient for transcription activation will enable the systematic study of TF function, which-particularly for TFs of different transcription activating functionalities-is still poorly understood.
Assuntos
Proteínas de Drosophila , Transativadores , Transcrição Gênica , Animais , Linhagem Celular , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster , Domínios Proteicos , Transativadores/biossíntese , Transativadores/genéticaRESUMO
One of the most important questions in biology is how transcription factors (TFs) and cofactors control enhancer function and thus gene expression. Enhancer activation usually requires combinations of several TFs, indicating that TFs function synergistically and combinatorially. However, while TF binding has been extensively studied, little is known about how combinations of TFs and cofactors control enhancer function once they are bound. It is typically unclear which TFs participate in combinatorial enhancer activation, whether different TFs form functionally distinct groups, or if certain TFs might substitute for each other in defined enhancer contexts. Here we assess the potential regulatory contributions of TFs and cofactors to combinatorial enhancer control with enhancer complementation assays. We recruited GAL4-DNA-binding-domain fusions of 812 Drosophila TFs and cofactors to 24 enhancer contexts and measured enhancer activities by 82,752 luciferase assays in S2 cells. Most factors were functional in at least one context, yet their contributions differed between contexts and varied from repression to activation (up to 289-fold) for individual factors. Based on functional similarities across contexts, we define 15 groups of TFs that differ in developmental functions and protein sequence features. Similar TFs can substitute for each other, enabling enhancer re-engineering by exchanging TF motifs, and TF-cofactor pairs cooperate during enhancer control and interact physically. Overall, we show that activators and repressors can have diverse regulatory functions that typically depend on the enhancer context. The systematic functional characterization of TFs and cofactors should further our understanding of combinatorial enhancer control and gene regulation.
Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Transcrição Gênica , Motivos de Aminoácidos , Animais , Linhagem Celular , DNA/genética , DNA/metabolismo , Regulação para Baixo/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Teste de Complementação Genética , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica , Transcrição Gênica/genética , Regulação para Cima/genéticaRESUMO
Background: Managing patients with atrial fibrillation (AF) and worsening renal function (WRF) remains a clinical challenge due to the need of dose adjustment of non-vitamin K antagonist oral anticoagulants. Objectives: To determine the incidence of WRF in patients with AF treated with edoxaban, the association of WRF with clinical outcomes, and predictors of WRF and clinical outcomes in these patients. Methods: This is a subanalysis of the Edoxaban Treatment in routiNe clinical prActice for patients with non-valvular Atrial Fibrillation in Europe study (NCT02944019), an observational study of edoxaban-treated patients with AF. WRF was defined as a ≥25% reduction in creatinine clearance between baseline and 2 years. Results: Of the 9,054 patients included (69% of the total 13,133 enrolled), most did not experience WRF (90.3%) during the first 2 years of follow-up. WRF occurred in 9.7% of patients. Patients with WRF had significantly higher rates of all-cause death (3.88%/y vs 1.88%/y; P < 0.0001), cardiovascular death (2.09%/y vs 0.92%/y; P < 0.0001), and major bleeding (1.51%/y vs 0.98%/y; P = 0.0463) compared with those without WRF. Rates of intracranial hemorrhage (0.18%/y vs 0.18%/y) and of any stroke/systemic embolic events were low (0.90%/y vs 0.69%/y; P = 0.3161) in both subgroups. The strongest predictors of WRF were a high CHA2DS2-VASc score, high baseline creatinine clearance, low body weight, and older age. Most predictors of WRF were also predictors of clinical outcomes. Conclusions: WRF occurred in approximately 10% of edoxaban-treated AF patients. Rates of death and major bleeding were significantly higher in patients with WRF than without. Stroke events were low in both subgroups.
RESUMO
OBJECTIVE: The low-density lipoprotein cholesterol goals in the 2019 European Society of Cardiology/European Atherosclerosis Society dyslipidaemia guidelines necessitate greater use of combination therapies. We describe a real-world cohort of patients in Austria and simulate the addition of oral bempedoic acid and ezetimibe to estimate the proportion of patients reaching goals. METHODS: Patients at high or very high cardiovascular risk on lipid-lowering treatments (excluding proprotein convertase subtilisin/kexin type 9 inhibitors) from the Austrian cohort of the observational SANTORINI study were included using specific criteria. For patients not at their risk-based goals at baseline, addition of ezetimibe (if not already received) and subsequently bempedoic acid was simulated using a Monte Carlo simulation. RESULTS: A cohort of patients (Nâ¯= 144) with a mean low-density lipoprotein cholesterol of 76.4â¯mg/dL, with 94% (nâ¯= 135) on statins and 24% (nâ¯= 35) on ezetimibe monotherapy or in combination, were used in the simulation. Only 36% of patients were at goal (nâ¯= 52). Sequential simulation of ezetimibe (where applicable) and bempedoic acid increased the proportion of patients at goal to 69% (nâ¯= 100), with a decrease in the mean low-density lipoprotein cholesterol from 76.4â¯mg/dL at baseline to 57.7â¯mg/dL overall. CONCLUSIONS: The SANTORINI real-world data in Austria suggest that a proportion of high and very high-risk patients remain below the guideline-recommended low-density lipoprotein cholesterol goals. Optimising use of oral ezetimibe and bempedoic acid after statins in the lipid-lowering pathway could result in substantially more patients attaining low-density lipoprotein cholesterol goals, likely with additional health benefits.
Assuntos
Anticolesterolemiantes , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Ezetimiba/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Áustria , Ácidos Graxos/efeitos adversos , LDL-ColesterolRESUMO
STAT1 has a key role in the regulation of innate and adaptive immunity by inducing transcriptional changes in response to cytokines, such as all types of interferons (IFN). STAT1 exist as two splice isoforms, which differ in regard to the C-terminal transactivation domain (TAD). STAT1ß lacks the C-terminal TAD and has been previously reported to be a weaker transcriptional activator than STAT1α, although this was strongly dependent on the target gene. The mechanism of this context-dependent effects remained unclear. By using macrophages from mice that only express STAT1ß, we investigated the role of the C-terminal TAD during the distinct steps of transcriptional activation of selected target genes in response to IFNγ. We show that the STAT1 C-terminal TAD is absolutely required for the recruitment of RNA polymerase II (Pol II) and for the establishment of active histone marks at the class II major histocompatibility complex transactivator (CIIta) promoter IV, whereas it is dispensable for histone acetylation at the guanylate binding protein 2 (Gbp2) promoter but required for an efficient recruitment of Pol II, which correlated with a strongly reduced, but not absent, transcriptional activity. IFNγ-induced expression of Irf7, which is mediated by STAT1 in complex with STAT2 and IRF9, did not rely on the presence of the C-terminal TAD of STAT1. Moreover, we show for the first time that the STAT1 C-terminal TAD is required for an efficient recruitment of components of the core Mediator complex to the IFN regulatory factor (Irf) 1 and Irf8 promoters, which both harbor an open chromatin state under basal conditions. Our study identified novel functions of the STAT1 C-terminal TAD in transcriptional activation and provides mechanistic explanations for the gene-specific transcriptional activity of STAT1ß.
Assuntos
Proteínas Nucleares/genética , Domínios Proteicos/imunologia , RNA Polimerase II/metabolismo , Fator de Transcrição STAT1/metabolismo , Transativadores/genética , Ativação Transcricional/imunologia , Animais , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Código das Histonas , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Transativadores/metabolismoRESUMO
Differential gene expression gives rise to the many cell types of complex organisms. Enhancers regulate transcription by binding transcription factors (TFs), which in turn recruit cofactors to activate RNA Polymerase II at core promoters. Transcriptional regulation is typically mediated by distinct combinations of TFs, enabling a relatively small number of TFs to generate a large diversity of cell types. However, how TFs achieve combinatorial enhancer control and how enhancers, enhancer-bound TFs, and the cofactors they recruit regulate RNA Polymerase II activity is not entirely clear. Here, we review how TF synergy is mediated at the level of DNA binding and after binding, the role of cofactors and the post-translational modifications they catalyze, and discuss different models of enhancer-core-promoter communication.
Assuntos
Regulação da Expressão Gênica/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional/genéticaRESUMO
Due to its multiple roles for the proliferation and pathogenicity of many microbes on the one hand and via modulation of immune effector functions on the other hand the control over iron homeostasis is thought to play a decisive role in the course of infections. Diversion of cellular iron traffic is considered as an important defense mechanism of macrophages to reduce metal availability for intracellular bacteria residing in the phagosome. However, evidence is lacking whether such alterations of iron homeostasis also become evident upon infection with bacteria gaining access to the cytosol like Listeria monocytogenes. Here we show that infection of macrophages with L. monocytogenes triggers the expression of the major cellular iron exporter ferroportin1 and induces cellular iron egress. As the growth of Listeria within macrophages is promoted by iron, stimulation of ferroportin1 functionality limits the availability of the metal for Listeria residing in the cytoplasm, whereas ferroportin1 degradation upon hepcidin treatment increases intracellular bacterial growth. In parallel to an increase of ferroportin1 expression, infected macrophages induce anti-microbial immune effector mechanisms such as TNFα formation or NO expression which are aggravated upon iron deficiency. These adaptive changes of iron homeostasis and immune response pathways are only found in macrophages infected with Listeria which express listeriolysin O and are therefore able to escape from the phagosome to the cytoplasm. Listeriolysin O deficient Listeria which are restricted to the phagosome are even killed by excess iron which may be based on "iron intoxification" via macrophage radical formation, because iron supplementation in that setting is paralleled by increased ROS formation. Our results indicate that ferroportin1 mediated iron export is a nutritional immune effector pathway to control infection with Listeria residing in the cytoplasm, whereas a different strategy is observed in mutant Listeria restricted to the phagosome, where iron remains in the macrophages likewise contributing to ROS mediated intoxification of bacteria.
Assuntos
Homeostase/efeitos dos fármacos , Ferro/farmacologia , Listeria monocytogenes/fisiologia , Listeriose/metabolismo , Listeriose/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Animais , Proteínas de Transporte de Cátions/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Imunomodulação/genética , Espaço Intracelular/microbiologia , Quelantes de Ferro/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fatores de TempoRESUMO
The transcriptional response to infection with the bacterium Listeria monocytogenes (Lm) requires cooperative signals of the type I interferon (IFN-I)-stimulated JAK-STAT and proinflammatory NF-κB pathways. Using ChIP-seq analysis, we define genes induced in Lm-infected macrophages through synergistic transcriptional activation by NF-κB and the IFN-I-activated transcription factor ISGF3. Using the Nos2 and IL6 genes as prime examples of this group, we show that NF-κB functions to recruit enzymes that establish histone marks of transcriptionally active genes. In addition, NF-κB regulates transcriptional elongation by employing the mediator kinase module for the recruitment of the pTEFb complex. ISGF3 has a major role in associating the core mediator with the transcription start as a prerequisite for TFIID and RNA polymerase II (Pol II) binding. Our data suggest that the functional cooperation between two major antimicrobial pathways is based on promoter priming by NF-κB and the engagement of the core mediator for Pol II binding by ISGF3.
Assuntos
Complexo Mediador/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Sítios de Ligação , Histona Acetiltransferases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Fator Gênico 3 Estimulado por Interferon/genética , Fator Gênico 3 Estimulado por Interferon/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Listeria monocytogenes/fisiologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais , Fator de Transcrição TFIID/metabolismo , Ativação TranscricionalRESUMO
The interferon (IFN)-stimulated gene factor 3 (ISGF3) transcription factor with its Stat1, Stat2, and interferon regulatory factor 9 (IRF9) subunits is employed for transcriptional responses downstream of receptors for type I interferons (IFN-I) that include IFN-α and IFN-ß and type III interferons (IFN-III), also called IFN-λ. Here, we show in a murine model of dextran sodium sulfate (DSS)-induced colitis that IRF9 deficiency protects animals, whereas the combined loss of IFN-I and IFN-III receptors worsens their condition. We explain the different phenotypes by demonstrating a function of IRF9 in a noncanonical transcriptional complex with Stat1, apart from IFN-I and IFN-III signaling. Together, Stat1 and IRF9 produce a proinflammatory activity that overrides the benefits of the IFN-III response on intestinal epithelial cells. Our results further suggest that the CXCL10 chemokine gene is an important mediator of this proinflammatory activity. We thus establish IFN-λ as a potentially anticolitogenic cytokine and propose an important role for IRF9 as a component of noncanonical Stat complexes in the development of colitis.
Assuntos
Colite/genética , Colite/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Interferons/imunologia , Animais , Células Cultivadas , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Colite/induzido quimicamente , Colite/patologia , Colo/imunologia , Colo/patologia , Sulfato de Dextrana , Deleção de Genes , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Fator de Transcrição STAT1/imunologia , Transdução de SinaisRESUMO
Transcriptional activation of the Nos2 gene, encoding inducible nitric oxide synthase (iNOS), during infection or inflammation requires coordinate assembly of an initiation complex by the transcription factors NF-κB and type I interferon-activated ISGF3. Here we show that infection of macrophages with the intracellular bacterial pathogen Listeria monocytogenes caused binding of the BET proteins Brd2, Brd3, and, most prominently, Brd4 to the Nos2 promoter and that a profound reduction of Nos2 expression occurred in the presence of the BET inhibitor JQ1. RNA polymerase activity at the Nos2 gene was regulated through Brd-mediated C-terminal domain (CTD) phosphorylation at serine 5. Underscoring the critical importance of Brd for the regulation of immune responses, application of JQ1 reduced NO production in mice infected with L. monocytogenes, as well as innate resistance to L. monocytogenes and influenza virus. In a murine model of inflammatory disease, JQ1 treatment increased the colitogenic activity of dextran sodium sulfate (DSS). The data presented in our study suggest that BET protein inhibition in a clinical setting poses the risk of altering the innate immune response to infectious or inflammatory challenge.
Assuntos
Imunidade Inata/imunologia , Inflamação/imunologia , Óxido Nítrico/imunologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Azepinas/farmacologia , Células Cultivadas , Proteínas Cromossômicas não Histona , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Inflamação/genética , Inflamação/metabolismo , Vírus da Influenza A Subtipo H1N1 , Listeria monocytogenes/imunologia , Listeria monocytogenes/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Nucleares/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/imunologia , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida , Fatores de Transcrição/genética , Triazóis/farmacologiaRESUMO
In this study we investigated the role of Bruton's tyrosine kinase (Btk) in the immune response to the Gram-positive intracellular bacterium Listeria monocytogenes (Lm). In response to Lm infection, Btk was activated in bone marrow-derived macrophages (BMMs) and Btk (-/-) BMMs showed enhanced TNF-α, IL-6 and IL-12p40 secretion, while type I interferons were produced at levels similar to wild-type (wt) BMMs. Although Btk-deficient BMMs displayed reduced phagocytosis of E. coli fragments, there was no difference between wt and Btk (-/-) BMMs in the uptake of Lm upon infection. Moreover, there was no difference in the response to heat-killed Lm between wt and Btk (-/-) BMMs, suggesting a role for Btk in signaling pathways that are induced by intracellular Lm. Finally, Btk (-/-) mice displayed enhanced resistance and an increased mean survival time upon Lm infection in comparison to wt mice. This correlated with elevated IFN-γ and IL-12p70 serum levels in Btk (-/-) mice at day 1 after infection. Taken together, our data suggest an important regulatory role for Btk in macrophages during Lm infection.
Assuntos
Listeria monocytogenes/fisiologia , Listeriose/enzimologia , Listeriose/microbiologia , Macrófagos/enzimologia , Macrófagos/microbiologia , Proteínas Tirosina Quinases/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Células da Medula Óssea/patologia , Citocinas/biossíntese , Suscetibilidade a Doenças , Ativação Enzimática/efeitos dos fármacos , Immunoblotting , Lipopeptídeos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeriose/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Fagossomos/microbiologia , Proteínas Tirosina Quinases/deficiênciaRESUMO
Synthesis of interferon-ß (IFN-ß) is an innate response to cytoplasmic infection with bacterial pathogens. Our recent studies showed that Listeria monocytogenes limits immune detection and IFN-ß synthesis via deacetylation of its peptidoglycan, which renders the bacterium resistant to lysozyme degradation. Here, we examined signaling requirements for the massive IFN-ß production resulting from the infection of murine macrophages with a mutant strain of L. monocytogenes, ΔpgdA, which is unable to modify its peptidoglycan. We report the identification of unconventional signaling pathways to the IFN-ß gene, requiring TLR2 and bacterial internalization. Induction of IFN-ß was independent of the Mal/TIRAP adaptor protein but required TRIF and the transcription factors IRF3 and IRF7. These pathways were stimulated to a lesser degree by wild-type L. monocytogenes. They operated in both resident and inflammatory macrophages derived from the peritoneal cavity, but not in bone marrow-derived macrophages. The novelty of our findings thus lies in the first description of TLR2 and TRIF as two critical components leading to the induction of the IFN-ß gene and in uncovering that individual macrophage populations adopt different strategies to link pathogen recognition signals to IFN-ß gene expression.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Interferon beta/biossíntese , Listeriose/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Células da Medula Óssea/patologia , Endocitose , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Listeriose/microbiologia , Listeriose/patologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , NF-kappa B/metabolismo , Ácidos Nucleicos/metabolismo , Receptores de Interleucina-1/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
Lipids undergo self-assembly to form ordered nonlamellar, nanoperiodic arrays both in vitro and in vivo. While engineering of such membrane arrays for technical devices is envisaged, we know little about their cellular function. Do they represent building blocks of an inherent cellular nanotechnology? Prospects for answering this question could be improved if the nanophysical properties of the membrane arrays could be studied in the context of specific cellular functions. Therefore, we draw attention to exceptional complex membrane arrays found in the renal epithelial cell line PtK2 that could provide perfect conditions for both biophysical and cell functional studies. The so-called tubulohelical membrane arrays (TUHMAs) combine nanoperiodicity of lipid membranes with that of helix-like proteinaceous core structures. Strikingly, they show several characteristics of dynamic, microtubule-associated single organelles. Our initial data indicate that TUHMA formation occurs in the depth of the cytoplasm under participation of cytoplasmic nucleoporins. Once matured, they may fuse with the nuclear membrane in polarized positions, either perpendicularly or in parallel to the nucleus. As a starting point for the initiation of functional studies we found a connection between TUHMAs and primary cilia, indicated by immunolabeling patterns of detyrosynated tubulin and cytoplasmic nucleoporins. We discuss these observations in the context of the ciliary cycle and of the specific requirement of ciliated renal epithelial cells for oriented cell division. Finally, we raise the question of whether putative nanooptical properties of TUHMAs could serve for communicating orientation between dividing cells.MCS codes: 92C37, 92C05, 92C50.