Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fish Biol ; 97(2): 583-587, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447755

RESUMO

The upper thermal tolerance of brook trout Salvelinus fontinalis was estimated using critical thermal maxima (CTmax ) experiments on fish acclimated to temperatures that span the species' thermal range (5-25°C). The CTmax increased with acclimation temperature but plateaued in fish acclimated to 20, 23 and 25°C. Plasma lactate was highest, and the hepato-somatic index (IH ) was lowest at 23 and 25°C, which suggests additional metabolic costs at those acclimation temperatures. The results suggest that there is a sub-lethal threshold between 20 and 23°C, beyond which the fish experience reduced physiological performance.


Assuntos
Aclimatação , Temperatura Alta , Truta/fisiologia , Animais , Glicemia , Ácido Láctico/sangue , Truta/sangue
2.
J Bioenerg Biomembr ; 51(5): 341-354, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392584

RESUMO

The highly abundant voltage-dependent anion-selective channel (VDAC) allows transit of metabolites across the mitochondrial outer membrane. Previous studies in Neurospora crassa showed that the LoPo strain, expressing 50% of normal VDAC levels, is indistinguishable from wild-type (WT). In contrast, the absence of VDAC (ΔPor-1), or the expression of an N-terminally truncated variant VDAC (ΔN2-12porin), is associated with deficiencies in cytochromes b and aa3 of complexes III and IV and concomitantly increased alternative oxidase (AOX) activity. These observations led us to investigate complex I and complex II activities in these strains, and to explore their mitochondrial bioenergetics. The current study reveals that the total NADH dehydrogenase activity is similar in mitochondria from WT, LoPo, ΔPor-1 and ΔN2-12porin strains; however, in ΔPor-1 most of this activity is the product of rotenone-insensitive alternative NADH dehydrogenases. Unexpectedly, LoPo mitochondria have increased complex II activity. In all mitochondrial types analyzed, oxygen consumption is higher in the presence of the complex II substrate succinate, than with the NADH-linked (complex I) substrates glutamate and malate. When driven by a combination of complex I and II substrates, membrane potentials (Δψ) and oxygen consumption rates (OCR) under non-phosphorylating conditions are similar in all mitochondria. However, as expected, the induction of state 3 (phosphorylating) conditions in ΔPor-1 mitochondria is associated with smaller but significant increases in OCR and smaller decreases in Δψ than those seen in wild-type mitochondria. High ROS production, particularly in the presence of rotenone, was observed under non-phosphorylating conditions in the ΔPor-1 mitochondria. Thus, the absence of VDAC is associated with increased ROS production, in spite of AOX activity and wild-type OCR in ΔPor-1 mitochondria.


Assuntos
Potenciais da Membrana , Mitocôndrias/metabolismo , Neurospora crassa/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Canais de Ânion Dependentes de Voltagem/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Metabolismo Energético , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Oxirredutases/metabolismo , Consumo de Oxigênio , Proteínas de Plantas/metabolismo
3.
Integr Comp Biol ; 58(3): 495-505, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010782

RESUMO

Mitochondrial electron transfer for oxidative ATP regeneration is linked to reactive oxygen species (ROS) production in aerobic eukaryotic cells. Because they can contribute to signaling as well as oxidative damage in cells, these ROS have profound impact for the physiology and survival of the organism. Although mitochondria have been recognized as a potential source for ROS for about 50 years, the mechanistic understanding on molecular sites and processes has advanced recently. Most experimental approaches neglect thermal variability among species although temperature impacts mitochondrial processes significantly. Here we delineate the importance of temperature by comparing muscle mitochondrial ROS formation across species. Measuring the thermal sensitivity of respiration, electron leak rate (ROS formation), and the antioxidant capacity (measured as H2O2 consumption) in intact mitochondria of representative ectothermic and endothermic vertebrate species, our results suggest that using a common assay temperature is inappropriate for comparisons of organisms with differing body temperatures. Moreover, we propose that measuring electron leak relative to the mitochondrial antioxidant capacity (the oxidant ratio) may be superior to normalizing relative to respiration rates or mitochondrial protein for comparisons of mitochondrial metabolism of ROS across species of varying mitochondrial respiratory capacities.


Assuntos
Antioxidantes/fisiologia , Elétrons , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Musculares/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Vertebrados/fisiologia , Animais , Respiração Celular , Temperatura
4.
Front Physiol ; 8: 704, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966595

RESUMO

Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively), the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL), was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red) muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis) with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and the lake sturgeon (Acipenser fulvescens)] and the rat. At a common assay temperature (25°C) rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C) but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26456509

RESUMO

Acute heat challenge is known to induce cell-level oxidative stress in fishes. Mitochondria are well known for the capacity to make reactive oxygen species (ROS) and as such are often implicated as a source of the oxidants associated with this thermally-induced oxidative stress. This implication is often asserted, despite little direct data for mitochondrial ROS metabolism in fishes. Here we characterize mitochondrial ROS metabolism in three Actinopterygian fish species at two levels, the capacity for superoxide/H2O2 production and the antioxidant thiol-reductase enzyme activities. We find that red muscle mitochondria from all three species have measurable ROS production and respond to different assay conditions consistent with what might be anticipated; assuming similar relative contributions from difference ROS producing sites as found in rat skeletal muscle mitochondria. Although there are species and assay specific exceptions, fish mitochondria may have a greater capacity to produce ROS than that found in the rat when either normalized to respiratory capacity or determined at a common assay temperature. The interspecific differences in ROS production are not correlated with thiol-based antioxidant reductase activities. Moreover, mimicking an acute in vivo heat stress by comparing the impact of increasing assay temperature on these processes in vitro, we find evidence supporting a preferential activation of mitochondrial H2O2 production relative to the increase in the capacity of reductase enzymes to supply electrons to the mitochondrial matrix peroxidases. This supports the contention that mitochondria may be, at least in part, responsible for the ROS that lead to oxidative stress in fish tissues exposed to acute heat challenge.


Assuntos
Peixes/metabolismo , Temperatura Alta/efeitos adversos , Mitocôndrias Musculares/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Transporte de Elétrons , Peróxido de Hidrogênio/metabolismo , Ratos , Compostos de Sulfidrila/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA