Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 32(11): 7700-7709, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35441839

RESUMO

OBJECTIVES: The aim of this study was to compare the quality of images obtained using single-energy computed tomography (SECT) performed with automated tube voltage adaptation (TVA) with dual-energy CT (DECT) weighted average images. METHODS: Eighty patients were prospectively randomized to undergo either SECT with TVA (n = 40, ref. mAs 200) or radiation dose-matched DECT (n = 40, 80/Sn150 kV, ref. mAs tube A 91/tube B 61) on a dual-source CT scanner. Objective image quality was evaluated as dose-normalized contrast-to-noise ratio (CNRD) for the jugular veins relative to fatty tissue and muscle tissue and for muscle tissue relative to fatty issue. For subjective image quality, reproduction of anatomical structures, image artifacts, image noise, spatial resolution, and overall diagnostic acceptability were evaluated at sixteen anatomical substructures using Likert-type scales. RESULTS: Effective radiation dose (ED) was comparable between SECT and DECT study groups (2.9 ± 0.6 mSv/3.1 ± 0.7 mSv, p = 0.5). All examinations were rated as excellent or good for clinical diagnosis. Compared to the CNRD in the SECT group, the CNRD in the DECT group was significantly higher for the jugular veins relative to fatty tissue (7.51/6.08, p < 0.001) and for muscle tissue relative to fatty tissue (4.18/2.90, p < 0.001). The CNRD for the jugular veins relative to muscle tissue (3.33/3.18, p = 0.51) was comparable between groups. Image artifacts were less pronounced and overall diagnostic acceptability was higher in the DECT group (all p = 0.01). CONCLUSIONS: DECT weighted average images deliver higher objective and subjective image quality than SECT performed with TVA in head and neck imaging. KEY POINTS: • Weighted average images derived from dual-energy CT deliver higher objective and subjective image quality than single-energy CT using automated tube voltage adaptation in head and neck imaging. • If available, dual-energy CT acquisition may be preferred over automated low tube voltage adopted single-energy CT for both malignant and non-malignant conditions.


Assuntos
Cabeça , Tomografia Computadorizada por Raios X , Humanos , Doses de Radiação , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Cabeça/diagnóstico por imagem , Pescoço
2.
NMR Biomed ; 34(6): e4487, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33594766

RESUMO

The aim of this prospective cohort study was to evaluate the effect of compression garments under resting conditions and after the induction of delayed-onset muscle soreness (DOMS) by MR perfusion imaging using intravoxel incoherent motion (IVIM). Magnetic resonance imaging of both lower legs of 16 volunteers was performed before and after standardized eccentric exercises that induced DOMS. A compression garment (21-22 mmHg) was worn during and for 6 h after exercise on one randomly selected leg. IVIM MR imaging, represented as total muscle perfusion D*f, perfusion fraction f and tissue diffusivity D, were compared between baseline and directly, 30 min, 6 h and 48 h after exhausting exercise with and without compression. Creatine kinase levels and T2-weighted images were acquired at baseline and after 48 h. DOMS was induced in the medial head of the gastrocnemius muscle (MGM) in all volunteers. Compression garments did not show any significant effect on IVIM perfusion parameters at any time point in the MGM or the tibialis anterior muscle (p > 0.05). Microvascular perfusion in the MGM increased significantly in both the compressed and noncompressed leg between baseline measurements and those taken directly after and 30 min after the exercise: the relative median f increased by 31.5% and 24.7% in the compressed and noncompressed leg, respectively, directly after the exercise compared with the baseline value. No significant change in tissue perfusion occurred 48 h after the induction of DOMS compared with baseline. It was concluded that compression garments (21-22 mmHg) do not alter microvascular muscle perfusion at rest, nor do they have any significant effect during the regeneration phase of DOMS. In DOMS, only a short-term effect of increased muscle perfusion (30 min after exercise) was observed, with normalization occurring during regeneration after 6-48 h. The normalization of perfusion independently of compression after 6 h may have implications for diagnostic and therapeutic strategies and for the better understanding of pathophysiological pathways in DOMS.


Assuntos
Vestuário , Imageamento por Ressonância Magnética , Movimento (Física) , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Mialgia/diagnóstico por imagem , Imagem de Perfusão , Perfusão , Adolescente , Adulto , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Adulto Jovem
3.
Eur Radiol ; 31(4): 2263-2271, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32970184

RESUMO

OBJECTIVES: Conventional perfusion-weighted MRI sequences often provide poor spatial or temporal resolution. We aimed to overcome this problem in head and neck protocols using a golden-angle radial sparse parallel (GRASP) sequence. METHODS: We prospectively included 58 patients for examination on a 3.0-T MRI using a study protocol. GRASP (A) was applied to a volumetric interpolated breath-hold examination (VIBE) with 135 reconstructed pictures and high temporal (2.5 s) and spatial resolution (0.94 × 0.94 × 3.00 mm). Additional sequences of matching temporal resolution (B: 2.5 s, 1.88 × 1.88 × 3.00 mm), with a compromise between temporal and spatial resolution (C: 7.0 s, 1.30 × 1.30 × 3.00 mm) and with matching spatial resolution (D: 145 s, 0.94 × 0.94 × 3.00 mm), were subsequently without GRASP. Instant inline-image reconstructions (E) provided one additional series of averaged contrast information throughout the entire acquisition duration of A. Overall diagnostic image quality, edge sharpness and contrast of soft tissues, vessels and lesions were subjectively rated using 5-point Likert scales. Objective image quality was measured as contrast-to-noise ratio in D and E. RESULTS: Overall, the anatomic and pathologic image quality was substantially better with the GRASP sequence for the temporally (A/B/C, all p < 0.001) and spatially resolved comparisons (D/E, all p < 0.002 except lesion edge sharpness with p = 0.291). Image artefacts were also less likely to occur with GRASP. Differences in motion, aliasing and truncation were mainly significant, but pulsation and fat suppression were comparable. In addition, the contrast-to-noise ratio of E was significantly better than that of D (pD-E < 0.001). CONCLUSIONS: High temporal and spatial resolution can be obtained synchronously using a GRASP-VIBE technique for perfusion evaluation in head and neck MRI. KEY POINTS: • Golden-angle radial sparse parallel (GRASP) sampling allows for temporally resolved dynamic acquisitions with a very high image quality. • Very low-contrast structures in the head and neck region can benefit from using the GRASP sequence. • Inline-image reconstruction of dynamic and static series from one single acquisition can replace the conventional combination of two acquisitions, thereby saving examination time.


Assuntos
Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Artefatos , Meios de Contraste , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Perfusão
4.
J Cardiovasc Magn Reson ; 22(1): 39, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32460852

RESUMO

BACKGROUND AND PURPOSE: Interpretation of T2 values remains difficult due to limited comparability across hardware and software systems and the lack of validated measurement recommendations for the number and orientation of mandatory slices. Our aims were to provide a standardized comparison of intra- and inter-individual T2 values in the short and long axes and to investigate inter-scanner reproducibility. METHOD AND MATERIALS: Ninety cardiovascular magnetic resonance (CMR) studies in 30 healthy subjects were performed with three identical 1.5 T CMR scanners (same hardware and software) using a balanced steady-state free precession (bSSFP) gradient echo sequence in three short axis (SAx) and three long axis (LAx) views. A commercially available T2 mapping software package of the latest generation with automatic in-line motion correction was used for acquisition. Regions of interest were manually drawn in each of the 16 myocardial segments according to the American Heart Association (AHA) model in three SAx and three LAx acquisitions. Analysis of inter-scanner, inter-segmental, intra-segmental, inter-regional and inter-level differences was performed. RESULTS: Inter-scanner reproducibility was high and the mean myocardial T2 value for all evaluated segments was 45.7 ± 3.4 ms. Significant inter-segmental variations of mean T2 values were found. Mean intra-segmental T2 values were comparable between LAx and SAx acquisitions in 72%. Significantly higher T2 values were found in apical segments and a significant disparity among different regions was found for SAx and LAx orientations. CONCLUSION: Standardized cardiac T2 mapping is highly reproducible on identical CMR systems. T2 values vary significantly between single heart segments, regions, levels, and axes in young, healthy subjects.


Assuntos
Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética/instrumentação , Software , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Variações Dependentes do Observador , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto Jovem
5.
Eur Radiol ; 29(8): 4207-4214, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30338365

RESUMO

OBJECTIVES: The aim of this study was to compare image quality of single-source dual-energy CT (SS-DECT) with third-generation dual-source dual-energy CT (DS-DECT) in head and neck cancer. MATERIALS AND METHODS: One hundred two patients with histologically proven head and neck cancer were prospectively randomized to undergo radiation dose-matched SS-DECT (n = 51, 120 kV, split-filter technique, 384 ref. mAs) or DS-DECT (n = 51, 80/Sn150 kV, tube A 100/tube B 67 ref. mAs). Inline default images (DI) and virtual monoenergetic images (VMI) for two different low energies (40 and 60 keV) were reconstructed. Objective image quality was evaluated as dose-normalized contrast to noise ratio (CNRD), and subjective image quality was rated on a 5-point Likert scale. RESULTS: In both groups, highest CNRD values for vessel and tumor attenuation were obtained at 40 keV. DS-DECT was significantly better than SS-DECT regarding vessel and tumor attenuation. Overall subjective image quality in the SS-DECT group was highest on the DI followed by 40 keV and 60 keV. In the DS-DECT group, subjective image quality was highest at 40 keV followed by 60 keV and the DI. Forty kiloelectron volts and 60 keV were significantly better in the DS-DECT compared to the SS-DECT group (both p < 0.01). CONCLUSIONS: In split-filter SS-DECT as well as in DS-DECT, highest overall image quality in head and neck imaging can be obtained with a combination of DI and low keV reconstructions. DS-DECT is superior to split-filter SS-DECT in terms of subjective image quality and vessel and tumor attenuation. KEY POINTS: • Image quality was diagnostic with both dual-energy techniques; however, the dual-source technique delivered significantly better results. • Highest overall image quality in head and neck imaging can be obtained with a combination of default images and low keV reconstructions with both dual-energy techniques. • The results of this study may have relevance for the decision-making process regarding replacement of CT scanners and focused patient examination considering image quality and subsequent therapeutic decision-making.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Tomografia Computadorizada por Raios X/normas , Feminino , Cabeça/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Pescoço/diagnóstico por imagem , Exposição à Radiação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/normas , Tomografia Computadorizada por Raios X/métodos
7.
Invest Radiol ; 59(3): 215-222, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490031

RESUMO

OBJECTIVES: The aim of this study was to evaluate the accuracy of modern low-field magnetic resonance imaging (MRI) for lung nodule detection and to correlate nodule size measurement with computed tomography (CT) as reference. MATERIALS AND METHODS: Between November 2020 and July 2021, a prospective clinical trial using low-field MRI at 0.55 T was performed in patients with known pulmonary nodules from a single academic medical center. Every patient underwent MRI and CT imaging on the same day. The primary aim was to evaluate the detection accuracy of pulmonary nodules using MRI with transversal periodically rotated overlapping parallel lines with enhanced reconstruction in combination with coronal half-Fourier acquired single-shot turbo spin-echo MRI sequences. The secondary outcome was the correlation of the mean lung nodule diameter with CT as reference according to the Lung Imaging Reporting and Data System. Nonparametric Mann-Whitney U test, Spearman rank correlation coefficient, and Bland-Altman analysis were applied to analyze the results. RESULTS: A total of 46 participants (mean age ± SD, 66 ± 11 years; 26 women) were included. In a blinded analysis of 964 lung nodules, the detection accuracy was 100% for those ≥6 mm (126/126), 80% (159/200) for those ≥4-<6 mm, and 23% (147/638) for those <4 mm in MRI compared with reference CT. Spearman correlation coefficient of MRI and CT size measurement was r = 0.87 ( P < 0.001), and the mean difference was 0.16 ± 0.9 mm. CONCLUSIONS: Modern low-field MRI shows excellent accuracy in lesion detection for lung nodules ≥6 mm and a very strong correlation with CT imaging for size measurement, but could not compete with CT in the detection of small nodules.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Feminino , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
8.
Invest Radiol ; 59(3): 223-229, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493286

RESUMO

OBJECTIVES: Temporomandibular disorders (TMDs) are common and may cause persistent functional limitations and pain. Magnetic resonance imaging (MRI) at 1.5 and 3 T is commonly applied for the evaluation of the temporomandibular joint (TMJ). No evidence is available regarding the feasibility of modern low-field MRI for the assessment of TMDs. The objective of this prospective study was to evaluate the image quality (IQ) of 0.55 T MRI in direct comparison with 1.5 T MRI. MATERIALS AND METHODS: Seventeen patients (34 TMJs) with suspected intraarticular TMDs were enrolled, and both 0.55 and 1.5 T MRI were performed on the same day. Two senior readers independently evaluated the IQ focusing on the conspicuity of disc morphology (DM), disc position (DP), and osseous joint morphology (OJM) for each joint. We analyzed the IQ and degree of artifacts using a 4-point Likert scale (LS) at both field strengths. A fully sufficient IQ was defined as an LS score of ≥3. Nonparametric Wilcoxon test for related samples was used for statistical comparison. RESULTS: The median IQ for the DM and OJM at 0.55 T was inferior to that at 1.5 T (DM: 3 [interquartile range {IQR}, 3-4] vs 4 [IQR, 4-4]; OJM: 3 [IQR, 3-4] vs 4 [IQR 4-4]; each P < 0.001). For DP, the IQ was comparable (4 [IQR 3-4] vs 4 [IQR 4-4]; P > 0.05). A sufficient diagnostic IQ was maintained for the DM, DP, and OJM in 92% of the cases at 0.55 T and 100% at 1.5 T. Minor image artifacts (LS score of ≥3) were more prevalent at 0.55 T (29%) than at 1.5 T (12%). CONCLUSIONS: Magnetic resonance imaging of the TMJ at 0.55 T yields a lower IQ than does MRI at 1.5 T but maintains sufficient diagnostic confidence in the majority of patients. Further improvements are needed for reliable clinical application.


Assuntos
Disco da Articulação Temporomandibular , Transtornos da Articulação Temporomandibular , Humanos , Disco da Articulação Temporomandibular/patologia , Estudos Prospectivos , Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/patologia , Imageamento por Ressonância Magnética/métodos
9.
Dentomaxillofac Radiol ; 52(8): 20230275, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641962

RESUMO

OBJECTIVES: Artefacts from dental implants in three-dimensional (3D) imaging may lead to incorrect representation of anatomical dimensions and impede virtual planning in navigated implantology. The aim of this study was quantitative assessment of artefacts in 3D STL models from cone beam CT (CBCT) and multislice CT (MSCT) using different scanning protocols and titanium-zirconium (Ti-Zr) and zirconium (ZrO2) implant materials. METHODS: Three ZrO2 and three Ti-Zr implants were respectively placed in the mandibles of two fresh human specimens. Before (baseline) and after implant placement, 3D digital imaging scans were performed (10 repetitions per timepoint: voxel size 0.2 mm³ and 0.3 mm³ for CBCT; 80 and 140 kV in MSCT). DICOM data were converted into 3D STL models and evaluated in computer-aided design software. After precise merging of the baseline and post-op models, the surface deviation was calculated, representing the extent of artefacts in the 3D models. RESULTS: Compared with baseline, ZrO2 emitted 36.5-37.3% (±0.6-0.8) artefacts in the CBCT and 39.2-50.2% (±0.5-1.2) in the MSCT models. Ti-Zr implants produced 4.1-7.1% (±0.3-3.0) artefacts in CBCT and 5.4-15.7% (±0.5-1.3) in MSCT. Significantly more artefacts were found in the MSCT vs CBCT models for both implant materials (p < 0.05). Significantly fewer artefacts were visible in the 3D models from scans with higher kilovolts in MSCT and smaller voxel size in CBCT. CONCLUSIONS: Among the four applied protocols, the lowest artefact proportion of ZrO2 and Ti-Zr implants in STL models was observed with CBCT and the 0.3 mm³ voxel size.


Assuntos
Implantes Dentários , Zircônio , Humanos , Titânio , Artefatos , Tomografia Computadorizada de Feixe Cônico/métodos
10.
Eur J Radiol ; 165: 110927, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37379624

RESUMO

OBJECTIVES: Vestibular schwannoma (VS) is the most common mass of the internal auditory canal (IAC) and is responsible for unilateral sensorineural hearing loss. Magnetic resonance imaging (MRI) at 1.5 T and 3 T is the standard of care for the evaluation of VS, and the feasibility of using modern low-field MRI for imaging of the IAC has not yet been elucidated. Hence, the purpose of this prospective study was to assess image quality and diagnostic performance of a modern 0.55 T MRI. MATERIALS AND METHODS: Fifty-six patients with known unilateral VS underwent routine MRI of the IAC at 1.5 T, followed immediately by 0.55 T MRI. Two radiologists independently evaluated the image quality, conspicuity of VS, diagnostic confidence, and image artifacts separately for isotropic T2-weighted SPACE images and for transversal and coronal T1-weighted fat-saturated contrast-enhanced images at 1.5 T and 0.55 T using 5-point Likert scales. In a second independent reading, both readers assessed lesion conspicuity and subjective diagnostic confidence in a direct comparison of 1.5 T and 0.55 T images. RESULTS: Image quality of transversal T1-weighted images (p = 0.13 and p = 0.16 for Reader 1 and Reader 2, respectively) and T2-weighted SPACE images (p = 0.39 and p = 0.58) were rated equally at 1.5 T and 0.55 T by both readers, whereas image quality of coronal T1-weighted images was superior at 1.5 T (p = 0.009 and p = 0.001). Analysis of the conspicuity of VS, diagnostic confidence, and image artifacts of all sequences revealed no significant differences between 1.5 T and 0.55 T. In the direct comparison of 1.5 T with 0.55 T images, there were no significant differences in lesion conspicuity or diagnostic confidence for any sequence (p = 0.60-0.73). CONCLUSIONS: Modern low-field MRI at 0.55 T provided a sufficient diagnostic image quality and seems feasible for the evaluation of VS of the IAC.


Assuntos
Neuroma Acústico , Humanos , Neuroma Acústico/diagnóstico por imagem , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Artefatos , Meios de Contraste
11.
Invest Radiol ; 58(3): 216-222, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165876

RESUMO

OBJECTIVES: Presurgical identification and morphologic characterization of the peroneal perforator arteries (PPAs) are essential for osseomyocutaneous flap surgery. The aim of this study was to evaluate PPAs using time-of-flight (TOF) angiography in 7 T magnetic resonance imaging in comparison with dual-energy computed tomographic angiography (CTA). MATERIALS AND METHODS: In this prospective study, TOF angiography and CTA of both lower legs were acquired before flap surgery from 07/2019 to 02/2020. Magnetic resonance imaging was performed using a dedicated 28-channel knee coil with an acquisition time of 9:55 minutes (voxel size: 0.4 × 0.4 × 0.8 mm). Computed tomographic angiography was acquired with a third-generation dual-source computed tomography on the same day. Virtual monoenergetic reconstructions at 40 keV photon energy served as the standard of reference for PPA identification and subtyping. Two independent readers assessed the image quality, quantity, length assessment, and classification according to surgical considerations of PPAs for TOF angiography and CTA. Both TOF angiography and CTA were used for presurgical flap design and were evaluated by an orofacial surgeon. RESULTS: Ten patients (mean age, 59.9 ± 14.9 years; 7 men) were included. Time-of-flight angiography and CTA identified 53 and 51 PPAs in total, respectively. Time-of-flight angiography showed superior image quality (both readers, P < 0.05). Time-of-flight angiography enabled specific classification of PPA subtypes more often (53 vs 39; P < 0.05), and both readers reported higher diagnostic confidence for TOF angiography than CTA in all patients (interrater agreement κ = 0.8; P < 0.05). Regarding length assessment, PPAs were significantly more conspicuous with TOF angiography (TOF mean , 50 ± 11 mm; CTA mean , 40 ± 9 mm; P = 0.001). In comparison with CTA, TOF angiography prospectively changed the orofacial surgeon's final decision on the presurgical selected PPAs in 60% of cases. CONCLUSIONS: Presurgical assessment of PPAs is feasible using TOF in 7 T magnetic resonance imaging. Moreover, TOF angiography was superior to CTA for classifying and identifying PPAs, which may facilitate the planning of reconstructive surgery.


Assuntos
Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Angiografia por Ressonância Magnética/métodos , Estudos Prospectivos , Angiografia por Tomografia Computadorizada/métodos , Artérias
12.
Diagnostics (Basel) ; 13(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37046460

RESUMO

This study compares the diagnostic performance and image quality of single-shot turbo spin-echo DWI (tseDWI), standard readout-segmented DWI (rsDWI), and a modified rsDWI version (topupDWI) for cholesteatoma diagnostics. Thirty-four patients with newly suspected unilateral cholesteatoma were examined on a 1.5 Tesla MRI scanner. Diagnostic performance was evaluated by calculating and comparing the sensitivity and specificity using histopathological results as the standard of reference. Image quality was independently reviewed by two readers using a 5-point Likert scale evaluating image distortions, susceptibility artifacts, image resolution, lesion conspicuity, and diagnostic confidence. Twenty-five cholesteatomas were histologically confirmed after surgery and originated in the study group. TseDWI showed the highest sensitivity with 96% (95% confidence interval (CI): 88-100%), followed by topupDWI with 92% (95% CI: 81-100%) for both readers. The sensitivity for rsDWI was 76% (95% CI: 59-93%) for reader 1 and 84% (95% CI: 70-98%) for reader 2, respectively. Both tseDWI and topupDWI revealed a specificity of 100% (95% CI: 66-100%) and rsDWI of 89% (95% CI: 52-100%). Both tseDWI and topupDWI showed fewer image distortions and susceptibility artifacts compared to rsDWI. Image resolution was consistently rated best for topupDWI, followed by rsDWI, which both outperformed tseDWI. TopupDWI and tseDWI showed comparable results for lesions' conspicuity and diagnostic confidence, both outperforming rsDWI. Modified readout-segmented DWI using the topup-correction method is preferable to standard rsDWI and may be regarded as an accurate alternative to single-shot turbo spin-echo DWI in cholesteatoma diagnostics.

13.
Invest Radiol ; 57(3): 148-156, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468413

RESUMO

OBJECTIVES: The purpose of this study was to evaluate the minimum diagnostic radiation dose level for the detection of high-resolution (HR) lung structures, pulmonary nodules (PNs), and infectious diseases (IDs). MATERIALS AND METHODS: A preclinical chest computed tomography (CT) trial was performed with a human cadaver without known lung disease with incremental radiation dose using tin filter-based spectral shaping protocols. A subset of protocols for full diagnostic evaluation of HR, PN, and ID structures was translated to clinical routine. Also, a minimum diagnostic radiation dose protocol was defined (MIN). These protocols were prospectively applied over 5 months in the clinical routine under consideration of the individual clinical indication. We compared radiation dose parameters, objective and subjective image quality (IQ). RESULTS: The HR protocol was performed in 38 patients (43%), PN in 21 patients (24%), ID in 20 patients (23%), and MIN in 9 patients (10%). Radiation dose differed significantly among HR, PN, and ID (5.4, 1.2, and 0.6 mGy, respectively; P < 0.001). Differences between ID and MIN (0.2 mGy) were not significant (P = 0.262). Dose-normalized contrast-to-noise ratio was comparable among all groups (P = 0.087). Overall IQ was perfect for the HR protocol (median, 5.0) and decreased for PN (4.5), ID-CT (4.3), and MIN-CT (2.5). The delineation of disease-specific findings was high in all dedicated protocols (HR, 5.0; PN, 5.0; ID, 4.5). The MIN protocol had borderline IQ for PN and ID lesions but was insufficient for HR structures. The dose reductions were 78% (PN), 89% (ID), and 97% (MIN) compared with the HR protocols. CONCLUSIONS: Personalized chest CT tailored to the clinical indications leads to substantial dose reduction without reducing interpretability. More than 50% of patients can benefit from such individual adaptation in a clinical routine setting. Personalized radiation dose adjustments with validated diagnostic IQ are especially preferable for evaluating ID and PN lesions.


Assuntos
Nódulos Pulmonares Múltiplos , Pneumonia , Fibrose , Humanos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
14.
J Craniomaxillofac Surg ; 50(3): 230-236, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34893389

RESUMO

The aim of this study was to assess the inter- and intrarater reliability of a recently proposed scoring system for temporomandibular disorders (TMD), based upon radiological findings from magnetic resonance imaging (MRI). Patients with clinically suspected uni- or bilateral TMD, and subsequently conducted MRI examination of both temporomandibular joints, were included in this study. MRI data were independently evaluated by two experienced radiologists according to the DLJ scoring system proposed by Wurm et al., which includes assessment of the following categories: articular disk (prefix 'D'), direction of disk luxation (prefix 'L'), and osseous joint alterations (prefix 'J'). 60 patients (49 female and 11 male) were eligible for analysis. No significant differences were found between both observers regarding 'D' and 'L' scores (p = 0.13 and p = 0.59, respectively). Significant differences were found for the assessment of subtle osseous changes ('J0' category: p = 0.041; 'J1' category: p = 0.018). Almost perfect intra- and interrater agreements were found for 'D' and 'L' categories (intrarater and interrater agreements for 'D': κ = 0.92 and κ = 0.84, respectively; intrarater and interrater agreements for 'L': κ = 0.93 and κ = 0.89, respectively). However, the assessment of 'J' categories revealed only moderate interrater agreement (κ = 0.49). The DLJ scoring system based upon MRI findings is feasible for routine clinical TMD assessment, and may help to simplify interdisciplinary communication between radiologists and clinicians.


Assuntos
Luxações Articulares , Transtornos da Articulação Temporomandibular , Feminino , Humanos , Luxações Articulares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Articulação Temporomandibular , Transtornos da Articulação Temporomandibular/diagnóstico por imagem
15.
Quant Imaging Med Surg ; 12(9): 4462-4473, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36060583

RESUMO

Background: There is limited information about perfusion in exercise-induced muscle injuries such as delayed-onset muscle soreness (DOMS) and the effect of compression garments as a therapeutic strategy during the regeneration phase. The purpose of this prospective, explorative study was to evaluate muscle perfusion in DOMS and to assess the effect of compression garments at resting conditions and during DOMS by magnetic resonance (MR) arterial spin labeling (ASL). Methods: DOMS was induced from 03/2021 to 04/2021 using an eccentric and plyometric exercises targeting the calf muscles in 14 volunteers. A compression garment (21-22 mmHg) was worn during and for 6 h after exercise on one randomized leg. Magnetic resonance imaging (MRI) including ASL of both lower legs was performed before and directly after the exercise as well as after 6 h, and 48 h using a 3 Tesla MRI system. Perfusion analyses of the gastrocnemius muscle (GM) and the tibialis anterior muscle (TA) were performed and results were compared to baseline measurements. T2-weighted images and creatine kinase levels were acquired at baseline and after 48 h. Results: All volunteers presented a successful induction of DOMS in the GM after 48 h. Arterial muscle perfusion in the GM increased from baseline to measurements taken directly after the exercise (4.97±5.59 mL/100 g/min, P<0.001). No significant alteration in perfusion compared to baseline was observed at 6 h (P=0.16) and 48 h (P=1.0) after the induction of DOMS. Compression garments did not elicit a significant alteration in ASL parameters in the GM (P=0.65) or the TA (P=0.05) at any time point. No adverse events occurred during the study. Conclusions: After an initial exercise-associated increase in arterial muscle perfusion, a normalization of blood supply was observed at 6 and 48 h after the exercise intervention inducing DOMS. Wearing a compression garment (21-22 mmHg) during and after the induction of DOMS did not affect muscle perfusion at rest, nor did it have any significant effect on muscle perfusion during the regeneration phase. The results can help to better understand the pathophysiological properties of DOMS and may have implications for diagnostic and therapeutic strategies.

16.
Diagnostics (Basel) ; 12(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36010211

RESUMO

The aim of this study was to assess the diagnostic value of ADC distribution curves for differentiation between benign and malignant parotid gland tumors and to compare with mean ADC values. 73 patients with parotid gland tumors underwent head-and-neck MRI on a 1.5 Tesla scanner prior to surgery and histograms of ADC values were extracted. Histopathological results served as a reference standard for further analysis. ADC histograms were evaluated by comparing their similarity to a reference distribution using Chi2-test-statistics. The assumed reference distribution for benign and malignant parotid gland lesions was calculated after pooling the entire ADC data. In addition, mean ADC values were determined. For both methods, we calculated and compared the sensitivity and specificity between benign and malignant parotid gland tumors and three subgroups (pleomorphic adenoma, Warthin tumor, and malignant lesions), respectively. Moreover, we performed cross-validation (CV) techniques to estimate the predictive performance between ADC distributions and mean values. Histopathological results revealed 30 pleomorphic adenomas, 22 Warthin tumors, and 21 malignant tumors. ADC histogram distribution yielded a better specificity for detection of benign parotid gland lesions (ADChistogram: 75.0% vs. ADCmean: 71.2%), but mean ADC values provided a higher sensitivity (ADCmean: 71.4% vs. ADChistogram: 61.9%). The discrepancies are most pronounced in the differentiation between malignant and Warthin tumors (sensitivity ADCmean: 76.2% vs. ADChistogram: 61.9%; specificity ADChistogram: 81.8% vs. ADCmean: 68.2%). Using CV techniques, ADC distribution revealed consistently better accuracy to differentiate benign from malignant lesions ("leave-one-out CV" accuracy ADChistogram: 71.2% vs. ADCmean: 67.1%). ADC histogram analysis using full distribution curves is a promising new approach for differentiation between primary benign and malignant parotid gland tumors, especially with respect to the advantage in predictive performance based on CV techniques.

17.
Radiol Case Rep ; 17(11): 4365-4367, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36188094

RESUMO

Osteoma of the middle ear (MEO) is a rarity. Due to the benign nature and slow growth rate, MEO are often occasionally found by chance. Possible unspecific clinical symptoms may be conductive hearing loss, tinnitus, effusion, and a sense of fullness. If the osteoma is small and not visible in the otoscopic inspection, it may be confused with other conductive hearing loss etiologies, such as otosclerosis. Nevertheless, one should be aware of this rare but important differential diagnosis of middle ear lesions. This article presents an MEO case causing conductive hearing loss and outlines the diagnostic approach with computed tomography.

18.
Diagnostics (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34829336

RESUMO

Pulmonary arterial dual-energy (aDE) CT is an established technique for evaluating pulmonary perfusion blood volume (PBV). As DECT protocols are increasingly used for thoraco-abdominal CT, this study assessed image quality and clinical findings in portal-venous phase dual-energy (vDE) CT and compared it to aDE. In 95 patients, vDE-CT was performed using a dual-source scanner (70/Sn150 kV, 560/140 ref.mAs). Pulmonary triggered aDE-CT served as reference (n = 94). PBV was reconstructed using a dedicated algorithm. Mean relative attenuation was measured in the pulmonary trunk, aorta, and segmented lung parenchyma. A distribution ratio (DL) between vessels and parenchyma was calculated to assess the iodine uptake of the lung parenchyma. Subjective overall diagnostic image quality was assessed for PBV images on a five-point Likert scale. Image artifacts were classified into five groups based on scale rating and compared between vDE and aDE. Pathological findings were correlated with the anatomical image datasets. Mean relative attenuation of the lung parenchyma was comparable in both groups (vDE: 23 ± 6 HU and aDE: 22 ± 7 HU), but significantly lower in the vessels of vDE. Therefore, iodine uptake of the lung parenchyma was significantly higher in vDE (DL: 10% vs. 8%, p < 0.01). The subjective overall image quality of the PBV images was comparable (p = 0.5). Rotation and streak artifacts were found in most of the patients (>86%, both p > 0.6). Dual-source artifacts were found in only a few patients in both groups (vDE 5%, aDE 7%, p = 0.5). Recess and subpleural artifacts were increased in vDE (vDE 53/27%, aDE 24/7%, both p < 0.001). Pathological findings were found in 19% of the vDE patients and 59% of the aDE patients. Comparable objective and subjective image quality of lung perfusion can be obtained in vDE and aDE. Iodine uptake of the lung parenchyma is increased in vDE compared to aDE, suggesting an interstitial pooling effect. Knowledge of the different appearances of artifacts will aid in the interpretation of the images. Additional clinical information about the lung parenchyma can be provided by PBV evaluation in vDE.

19.
Z Med Phys ; 31(3): 254-264, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33648794

RESUMO

AIM: Microanatomical evaluation of cochlear implant (CI) patients to identify anatomical risk factors for a scalar translocation. METHODS: CI patients with both a regular scala tympani spiralization (group A) and a scalar translocation (group B) were identified via postoperative flat-detector computed tomography (FD-CT). Then, the corresponding preoperative multislice computed tomography (MS-CT) and postoperative FD-CT datasets were assessed: First, the cochleae were separated in 6 segments of 45° each. Next, quantitative (cochlea height, length, depth, cochlear duct diameter [CD] per segment; percentual tapering of the CD per segment named cochlear geometry index [CGI]) and qualitative (identifiability of the CI model; CI-integrity; intracochlear array position) parameters were evaluated and compared for both groups. Receiver-operating-characteristics (ROC) analysis was performed for the CGI. RESULTS: In total, 40 preoperative MS-CT and postoperative FD-CT datasets (nA=20; nB=20) were analysed. Model "CI 512" was successfully identified and CI-integrity has been confirmed in all cases. Quantitative analysis showed a significant difference of both the CD at 0° (CDA0°= 2.06± 0.23mm; CDB0°= 2.19±0.18mm; p0°= 0.04) and the CGI of the first segment (CGIA0°-45°= 18.87±6.04%; CGIB0°-45°= 28.89±8.58%; p0°-45°= 0.0001). For all other 5 cochlear segments there was no significant difference of CD and CGI; there was no significant difference of external cochlea diameters. The area under the curve (AUC) of the CGI0-45° was 0.864 with 24.50° as the optimal cut-off value to discriminate patients with a scala tympani spiralization and a scalar translocation. CGI0-45° of> 24.50° allowed the correct identification of 85% of patients with a scalar translocation. CONCLUSION: CI insertion trauma is associated with a significantly higher narrowing of the proximal basal cochlea turn (BCT). The CGI as percentual tapering of the BCT turned out as reliable, clinically applicable parameter for identification of patients with an increased risk for a scalar translocation.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/cirurgia , Humanos , Fatores de Risco , Rampa do Tímpano/cirurgia
20.
Front Oncol ; 11: 734872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745957

RESUMO

OBJECTIVES: To assess the predictive value of multiparametric MRI for treatment response evaluation of induction chemo-immunotherapy in locally advanced head and neck squamous cell carcinoma. METHODS: Twenty-two patients with locally advanced, histologically confirmed head and neck squamous cell carcinoma who were enrolled in the prospective multicenter phase II CheckRad-CD8 trial were included in the current analysis. In this unplanned secondary single-center analysis, all patients who received contrast-enhanced MRI at baseline and in week 4 after single-cycle induction therapy with cisplatin/docetaxel combined with the immune checkpoint inhibitors tremelimumab and durvalumab were included. In week 4, endoscopy with representative re-biopsy was performed to assess tumor response. All lesions were segmented in the baseline and restaging multiparametric MRI, including the primary tumor and lymph node metastases. The volume of interest of the respective lesions was volumetrically measured, and time-resolved mean intensities of the golden-angle radial sparse parallel-volume-interpolated gradient-echo perfusion (GRASP-VIBE) sequence were extracted. Additional quantitative parameters including the T1 ratio, short-TI inversion recovery ratio, apparent diffusion coefficient, and dynamic contrast-enhanced (DCE) values were measured. A model based on parallel random forests incorporating the MRI parameters from the baseline MRI was used to predict tumor response to therapy. Receiver operating characteristic (ROC) curves were used to evaluate the prognostic performance. RESULTS: Fifteen patients (68.2%) showed pathologic complete response in the re-biopsy, while seven patients had a residual tumor (31.8%). In all patients, the MRI-based primary tumor volume was significantly lower after treatment. The baseline DCE parameters of time to peak and wash-out were significantly different between the pathologic complete response group and the residual tumor group (p < 0.05). The developed model, based on parallel random forests and DCE parameters, was able to predict therapy response with a sensitivity of 78.7% (95% CI 71.24-84.93) and a specificity of 78.6% (95% CI 67.13-87.48). The model had an area under the ROC curve of 0.866 (95% CI 0.819-0.914). CONCLUSIONS: DCE parameters indicated treatment response at follow-up, and a random forest machine learning algorithm based on DCE parameters was able to predict treatment response to induction chemo-immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA