Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Infect Immun ; : e0004824, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814083

RESUMO

Commensal bacteria are crucial in maintaining host physiological homeostasis, immune system development, and protection against pathogens. Despite their significance, the factors influencing persistent bacterial colonization and their impact on the host still need to be fully understood. Animal models have served as valuable tools to investigate these interactions, but most have limitations. The bacterial genus Neisseria, which includes both commensal and pathogenic species, has been studied from a pathogenicity to humans perspective but lacks models that study immune responses in the context of long-term persistence. Neisseria musculi, a recently described natural commensal of mice, offers a unique opportunity to study long-term host-commensal interactions. In this study, for the first time, we have used this model to study the transcriptional, phenotypic, and functional dynamics of immune cell signatures in the mucosal and systemic tissue of mice in response to N. musculi colonization. We found key genes and pathways vital for immune homeostasis in palate tissue, validated by flow cytometry of immune cells from the lung, blood, and spleen. This study offers a novel avenue for advancing our understanding of host-bacteria dynamics and may provide a platform for developing efficacious interventions against mucosal persistence by pathogenic Neisseria.

2.
Syst Biol ; 72(4): 802-819, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-36960591

RESUMO

A fundamental aspect of symbiotic relationships is host specificity, ranging from extreme specialists associated with only a single host species to generalists associated with many different species. Although symbionts with limited dispersal capabilities are expected to be host specialists, some are able to associate with multiple hosts. Understanding the micro- and macro-evolutionary causes of variations in host specificity is often hindered by sampling biases and the limited power of traditional evolutionary markers. Here, we studied feather mites to address the barriers associated with estimates of host specificity for dispersal-limited symbionts. We sampled feather mites (Proctophyllodidae) from a nearly comprehensive set of North American breeding warblers (Parulidae) to study mite phylogenetic relationships and host-symbiont codiversification. We used pooled-sequencing (Pool-Seq) and short-read Illumina technology to interpret results derived from a traditional barcoding gene (cytochrome c oxidase subunit 1) versus 11 protein-coding mitochondrial genes using concatenated and multispecies coalescent approaches. Despite the statistically significant congruence between mite and host phylogenies, mite-host specificity varies widely, and host switching is common regardless of the genetic marker resolution (i.e., barcode vs. multilocus). However, the multilocus approach was more effective than the single barcode in detecting the presence of a heterogeneous Pool-Seq sample. These results suggest that presumed symbiont dispersal capabilities are not always strong indicators of host specificity or of historical host-symbiont coevolutionary events. A comprehensive sampling at fine phylogenetic scales may help to better elucidate the microevolutionary filters that impact macroevolutionary processes regulating symbioses, particularly for dispersal-limited symbionts. [Codiversification; cophylogenetics; feather mites; host switching; pooled sequencing; species delineation; symbiosis, warblers.].


Assuntos
Especificidade de Hospedeiro , Ácaros , Animais , Filogenia , Ácaros/genética , Evolução Biológica , Simbiose
3.
Mol Ecol ; 32(19): 5260-5275, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37635403

RESUMO

Researchers often examine symbiont host specificity as a species-level pattern, but it can also be key to understanding processes occurring at the population level, which are not as well understood. The specialist-generalist variation hypothesis (SGVH) attempts to explain how host specificity influences population-level processes, stating that single-host symbionts (specialists) exhibit stronger population genetic structure than multi-host symbionts (generalists) because of fewer opportunities for dispersal and more restricted gene flow between populations. However, this hypothesis has not been tested in systems with highly mobile hosts, in which population connectivity may vary temporally and spatially. To address this gap, we tested the SGVH on proctophyllodid feather mites found on migratory warblers (family Parulidae) with contrasting host specificities, Amerodectes protonotaria (a host specialist of Protonotaria citrea) and A. ischyros (a host generalist of 17 parulid species). We used a pooled-sequencing approach and a novel workflow to analyse genetic variants obtained from whole genome data. Both mite species exhibited fairly weak population structure overall, and contrary to predictions of the SGVH, the generalist was more strongly structured than the specialist. These results may suggest that specialists disperse more freely among conspecifics, whereas generalists sort according to geography. Furthermore, our results may reflect an unexpected period for mite transmission - during the nonbreeding season of migratory hosts - as mite population structure more closely reflects the distributions of hosts during the nonbreeding season. Our findings alter our current understanding of feather mite biology and highlight the potential for studies to explore factors driving symbiont diversification at multiple evolutionary scales.


Assuntos
Ácaros , Passeriformes , Animais , Ácaros/genética , Passeriformes/genética , Evolução Biológica , Especificidade de Hospedeiro , Geografia , Simbiose/genética
4.
J Exp Bot ; 74(17): 5294-5306, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37260405

RESUMO

Genetic underpinnings of host-pathogen interactions in the parasitic plant Striga hermonthica, a root parasitic plant that ravages cereals in sub-Saharan Africa, are unclear. We performed a comparative transcriptome study on five genotypes of sorghum exhibiting diverse resistance responses to S. hermonthica using weighted gene co-expression network analysis (WGCNA). We found that S. hermonthica elicits both basal and effector-triggered immunity-like a bona fide pathogen. The resistance response was genotype specific. Some resistance responses followed the salicylic acid-dependent signaling pathway for systemic acquired resistance characterized by cell wall reinforcements, lignification, and callose deposition, while in others the WRKY-dependent signaling pathway was activated, leading to a hypersensitive response. In some genotypes, both modes of resistance were activated, while in others either mode dominated the resistance response. Cell wall-based resistance was common to all sorghum genotypes but strongest in IS2814, while a hypersensitive response was specific to N13, IS9830, and IS41724. WGCNA further allowed for pinpointing of S. hermonthica resistance causative genes in sorghum, including glucan synthase-like 10 gene, a pathogenesis-related thaumatin-like family gene, and a phosphoinositide phosphatase gene. Such candidate genes will form a good basis for subsequent functional validation and possibly future resistance breeding.


Assuntos
Sorghum , Striga , Sorghum/genética , Sorghum/metabolismo , Striga/genética , Grão Comestível , Melhoramento Vegetal , África Subsaariana
5.
BMC Gastroenterol ; 18(1): 93, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29929472

RESUMO

BACKGROUND: Human rotavirus (HRV) is a major cause of viral gastroenteritis in infants; particularly in developing countries where malnutrition is prevalent. Malnutrition perturbs the infant gut microbiota leading to sub-optimal functioning of the immune system and further predisposing infants to enteric infections. Therefore, we hypothesized that malnutrition exacerbates rotavirus disease severity in infants. METHODS: In the present study, we used a neonatal germ free (GF) piglets transplanted with a two-month-old human infant's fecal microbiota (HIFM) on protein deficient and sufficient diets. We report the effects of malnourishment on the HRV infection and the HIFM pig microbiota in feces, intestinal and systemic tissues, using MiSeq 16S gene sequencing (V4-V5 region). RESULTS: Microbiota analysis indicated that the HIFM transplantation resulted in a microbial composition in pigs similar to that of the original infant feces. This model was then used to understand the interconnections between microbiota diversity, diet, and HRV infection. Post HRV infection, HIFM pigs on the deficient diet had lower body weights, developed more severe diarrhea and increased virus shedding compared to HIFM pigs on sufficient diet. However, HRV induced diarrhea and shedding was more pronounced in non-colonized GF pigs compared to HIFM pigs on either sufficient or deficient diet, suggesting that the microbiota alone moderated HRV infection. HRV infected pigs on sufficient diet showed increased microbiota diversity in intestinal tissues; whereas, greater diversity was observed in systemic tissues of HRV infected pigs fed with deficient diet. CONCLUSIONS: These results suggest that proper nourishment improves the microbiota quality in the intestines, alleviates HRV disease and lower probability of systemic translocation of potential opportunistic pathogens/pathobionts. In conclusion, our findings further support the role for microbiota and proper nutrition in limiting enteric diseases.


Assuntos
Gastroenterite/complicações , Gastroenterite/microbiologia , Microbioma Gastrointestinal , Desnutrição/complicações , Desnutrição/microbiologia , Infecções por Rotavirus/complicações , Infecções por Rotavirus/microbiologia , Animais , Diarreia/microbiologia , Diarreia/virologia , Suscetibilidade a Doenças , Fezes/microbiologia , Gastroenterite/virologia , Humanos , Lactente , Intestinos/microbiologia , Desnutrição/virologia , RNA Ribossômico 16S , Infecções por Rotavirus/virologia , Análise de Sequência de RNA , Suínos , Eliminação de Partículas Virais , Aumento de Peso
6.
BMC Genomics ; 18(1): 707, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886704

RESUMO

BACKGROUND: Landrace farmers are the keepers of crops locally adapted to the environments where they are cultivated. Patterns of diversity across the genome can provide signals of past evolution in the face of abiotic and biotic change. Understanding this rich genetic resource is imperative especially since diversity can provide agricultural security as climate continues to shift. RESULTS: Here we employ RNA sequencing (RNA-seq) to understand the role that conditions that vary across a landscape may have played in shaping genetic diversity in the maize landraces of Chiapas, Mexico. We collected landraces from three distinct elevational zones and planted them in a midland common garden. Early season leaf tissue was collected for RNA-seq and we performed weighted gene co-expression network analysis (WGCNA). We then used association analysis between landrace co-expression module expression values and environmental parameters of landrace origin to elucidate genes and gene networks potentially shaped by environmental factors along our study gradient. Elevation of landrace origin affected the transcriptome profiles. Two co-expression modules were highly correlated with temperature parameters of landrace origin and queries into their 'hub' genes suggested that temperature may have led to differentiation among landraces in hormone biosynthesis/signaling and abiotic and biotic stress responses. We identified several 'hub' transcription factors and kinases as candidates for the regulation of these responses. CONCLUSIONS: These findings indicate that natural selection may influence the transcriptomes of crop landraces along an elevational gradient in a major diversity center, and provide a foundation for exploring the genetic basis of local adaptation. While we cannot rule out the role of neutral evolutionary forces in the patterns we have identified, combining whole transcriptome sequencing technologies, established bioinformatics techniques, and common garden experimentation can powerfully elucidate structure of adaptive diversity across a varied landscape. Ultimately, gaining such understanding can facilitate the conservation and strategic utilization of crop genetic diversity in a time of climate change.


Assuntos
Perfilação da Expressão Gênica , Transcrição Gênica , Zea mays/genética , Mudança Climática , Produtos Agrícolas , Meio Ambiente , Genes de Plantas/genética , Variação Genética , México , Análise de Sequência de RNA
7.
BMC Genomics ; 18(1): 472, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645245

RESUMO

BACKGROUND: Genetic resistance of soybean [Glycine max (L.) Merr] against Aphis glycines provides effective management of this invasive pest, though the underlying molecular mechanisms are largely unknown. This study aimed to investigate genome-wide changes in gene expressions of soybean near-isogenic lines (NILs) either with the Rag5 allele for resistance or the rag5 allele for susceptibility to the aphid following infestation with soybean aphid biotype 2. RESULTS: The resistant (R)-NIL responded more rapidly to aphid infestation than the susceptible (S)-NIL, with differential expressions of 2496 genes during first 12 h of infestation (hai), compared to the aphid-free control. Although the majority of the differentially expressed genes (DEGs) in the R-NIL also responded to aphid infestation in S-NIL, overall the response time was longer and/or the magnitude of change was smaller in the S-NIL. In addition, 915 DEGs in R-NIL continued to be regulated at all time points (0, 6, 12, and 48 hai), while only 20 DEGs did so in S-NIL. Enriched gene ontology of the 2496 DEGs involved in plant defense responses including primary metabolite catalysis, oxidative stress reduction, and phytohormone-related signaling. By comparing R- vs. S-NIL, a total of 556 DEGs were identified. Of the 13 genes annotated in a 120-kb window of the Rag5 locus, two genes (Glyma.13 g190200 and Glyma.13 g190600) were differentially expressed (upregulated in S- or R-NIL), and another gene (Glyma.13 g190500) was induced up to 4-fold in the R-NIL at 6 and 12 h following aphid infestation. CONCLUSIONS: This study strengthens our understanding of the defense dynamics in compatible and incompatible interactions of soybean and soybean aphid biotype 2. Several DEGs (e.g., Glyma.13 g190200, Glyma.13 g190500, and Glyma.13 g190600) near the Rag5 locus are strong candidate genes for further investigations.


Assuntos
Alelos , Afídeos/fisiologia , Perfilação da Expressão Gênica , Glycine max/genética , Glycine max/fisiologia , Animais , Cromossomos de Plantas/genética , Loci Gênicos/genética , RNA Mensageiro/genética
8.
J Exp Bot ; 67(5): 1311-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26685185

RESUMO

Plants have evolved to extensively employ leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest family of RLKs, to control growth, development, and defense. In Arabidopsis thaliana, the EXCESS MICROSPOROCYTES1 (EMS1) LRR-RLK and its potential small protein ligand TAPETUM DETERMINANT1 (TPD1) are specifically required for anther cell differentiation; however, TPD1 and EMS1 orthologs also control megaspore mother cell proliferation in rice and maize ovules. Here, the molecular function of TPD1 was demonstrated during ovule development in Arabidopsis using a gain-of-function approach. In ovules, the EMS1 gene was primarily expressed in nucellus epidermis and chalaza, whereas the expression of TPD1 was weakly restricted to the distal end of integuments. Ectopic expression of TPD1 caused pleiotropic defects in ovule and seed development. RNA sequencing analysis showed that ectopic expression of TPD1 altered expression of auxin signaling genes and core cell-cycle genes during ovule development. Moreover, ectopic expression of TPD1 not only affected auxin response but also enhanced expression of cyclin genes CYCD3;3 and CYCA2;3 in ovules. Thus, these results provide insight into the molecular mechanism by which TPD1-EMS1 signaling controls plant development possibly via regulation of auxin signaling and cell-cycle genes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Expressão Ectópica do Gene , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Óvulo Vegetal/citologia , Regiões Promotoras Genéticas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais/genética , Regulação para Cima/genética
9.
Genome Res ; 22(3): 508-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22106370

RESUMO

Meiotic recombination, including crossovers (COs) and gene conversions (GCs), impacts natural variation and is an important evolutionary force. COs increase genetic diversity by redistributing existing variation, whereas GCs can alter allelic frequency. Here, we sequenced Arabidopsis Landsberg erecta (Ler) and two sets of all four meiotic products from a Columbia (Col)/Ler hybrid to investigate genome-wide variation and meiotic recombination at nucleotide resolution. Comparing Ler and Col sequences uncovered 349,171 Single Nucleotide Polymorphisms (SNPs), 58,085 small and 2315 large insertions/deletions (indels), with highly correlated genome-wide distributions of SNPs, and small indels. A total of 443 genes have at least 10 nonsynonymous substitutions in protein-coding regions, with enrichment for disease-resistance genes. Another 316 genes are affected by large indels, including 130 genes with complete deletion of coding regions in Ler. Using the Arabidopsis qrt1 mutant, two sets of four meiotic products were generated and analyzed by sequencing for meiotic recombination, representing the first tetrad analysis with whole-genome sequencing in a nonfungal species. We detected 18 COs, six of which had an associated GC event, and four GCs without COs (NCOs), and revealed that Arabidopsis GCs are likely fewer and with shorter tracts than those in yeast. Meiotic recombination and chromosome assortment events dramatically redistributed genome variation in meiotic products, contributing to population diversity. In particular, meiosis provides a rapid mechanism to generate copy-number variation (CNV) of sequences that have different chromosomal positions in Col and Ler.


Assuntos
Arabidopsis/genética , Variação Genética , Genoma de Planta , Meiose , Recombinação Genética , Troca Genética , Variações do Número de Cópias de DNA , Conversão Gênica , Estudo de Associação Genômica Ampla , Mutagênese Insercional , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Deleção de Sequência
10.
J Exp Bot ; 66(20): 6471-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175354

RESUMO

fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal-distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins.


Assuntos
Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Theor Appl Genet ; 126(4): 1121-32, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354974

RESUMO

Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdemann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the USA. Partial resistance is as effective in managing this disease as single-gene (Rps gene)-mediated resistance and is more durable. The objective of this study was to identify quantitative trait loci (QTL) associated with partial resistance to P. sojae in PI 398841, which originated from South Korea. A population of 305 F7:8 recombinant inbred lines derived from a cross of OX20-8 × PI 398841 was used to evaluate partial resistance against P. sojae isolate C2S1 using a tray test. Composite interval mapping using a genome-wide logarithm of odd (LOD) threshold detected three QTL on chromosomes 1, 13, and 18, which individually explained 4-16 % of the phenotypic variance. Seven additional QTL, accounting for 2-3 % of phenotypic variance each, were identified using chromosome-wide LOD thresholds. Seven of the ten QTL for resistance to P. sojae were contributed by PI 398841. Seven QTL co-localized with known Rps genes and previously reported QTL for soil-borne root pathogens, isoflavone, and seed oil. Three QTL on chromosomes 3, 13, and 18 co-localized with known Rps genes, but PI 398841 did not exhibit an Rps gene-mediated resistance response following inoculation with 48 different isolates of P. sojae. PI 398841 is potentially a source of novel genes for improving soybean cultivars for partial resistance to P. sojae.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Fenótipo , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética/genética , Genótipo , Escore Lod
12.
Data Brief ; 46: 108835, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36591378

RESUMO

Feather mites are ubiquitous, permanent, obligate ectosymbionts of avian hosts and are a valuable natural system for studying host-symbiont evolutionary and ecological dynamics at multiple levels of biological organization. However, a lack of a sequenced genome impedes molecular studies using this system. Therefore, we present the first draft genome of a symbiotic feather mite, Amerodectes protonotaria Hernandes 2018. The genome sequence data presented here were derived from an individual female mite that was collected in the field from Protonotaria citrea, its only known host species. Short read sequence data were obtained using an Illumina NovaSeq 6000 platform. From these data, we assembled a 59,665,063 bp draft genome consisting of 2,399 contigs. Raw short reads and the assembled genome sequence are available at the National Center for Biotechnology Information (NCBI)'s Sequence Read Archive (SRA) under BioProject PRJNA884722. The data presented here are beneficial for future research on the biology and evolution of closely related mites and the genomics of host-symbiont interactions.

13.
PLoS One ; 18(7): e0287590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418376

RESUMO

Phytophthora sojae is a soil-borne oomycete and the causal agent of Phytophthora root and stem rot (PRR) in soybean (Glycine max [L.] Merrill). Yield losses attributed to P. sojae are devastating in disease-conducive environments, with global estimates surpassing 1.1 million tonnes annually. Historically, management of PRR has entailed host genetic resistance (both vertical and horizontal) complemented by disease-suppressive cultural practices (e.g., oomicide application). However, the vast expansion of complex and/or diverse P. sojae pathotypes necessitates developing novel technologies to attenuate PRR in field environments. Therefore, the objective of the present study was to couple high-throughput sequencing data and deep learning to elucidate molecular features in soybean following infection by P. sojae. In doing so, we generated transcriptomes to identify differentially expressed genes (DEGs) during compatible and incompatible interactions with P. sojae and a mock inoculation. The expression data were then used to select two defense-related transcription factors (TFs) belonging to WRKY and RAV families. DNA Affinity Purification and sequencing (DAP-seq) data were obtained for each TF, providing putative DNA binding sites in the soybean genome. These bound sites were used to train Deep Neural Networks with convolutional and recurrent layers to predict new target sites of WRKY and RAV family members in the DEG set. Moreover, we leveraged publicly available Arabidopsis (Arabidopsis thaliana) DAP-seq data for five TF families enriched in our transcriptome analysis to train similar models. These Arabidopsis data-based models were used for cross-species TF binding site prediction on soybean. Finally, we created a gene regulatory network depicting TF-target gene interactions that orchestrate an immune response against P. sojae. Information herein provides novel insight into molecular plant-pathogen interaction and may prove useful in developing soybean cultivars with more durable resistance to P. sojae.


Assuntos
Arabidopsis , Phytophthora , Humanos , Resistência à Doença/genética , Glycine max/metabolismo , Phytophthora/genética , Arabidopsis/genética , Redes Reguladoras de Genes , Doenças das Plantas/genética
14.
Life (Basel) ; 13(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37895435

RESUMO

Microscopic symbionts represent crucial links in biological communities. However, they present technical challenges in high-throughput sequencing (HTS) studies due to their small size and minimal high-quality DNA yields, hindering our understanding of host-symbiont coevolution at microevolutionary and macroevolutionary scales. One approach to overcome those barriers is to pool multiple individuals from the same infrapopulation (i.e., individual host) and sequence them together (Pool-Seq), but individual-level information is then compromised. To simultaneously address both issues (i.e., minimal DNA yields and loss of individual-level information), we implemented a strategic Pool-Seq approach to assess variation in sequencing performance and categorize genetic diversity (single nucleotide polymorphisms (SNPs)) at both the individual-level and infrapopulation-level for microscopic feather mites. To do so, we collected feathers harboring mites (Proctophyllodidae: Amerodectes protonotaria) from four individual Prothonotary Warblers (Parulidae: Protonotaria citrea). From each of the four hosts (i.e., four mite infrapopulations), we conducted whole-genome sequencing on three extraction pools consisting of different numbers of mites (1 mite, 5 mites, and 20 mites). We found that samples containing pools of multiple mites had more sequencing reads map to the feather mite reference genome than did the samples containing only a single mite. Mite infrapopulations were primarily genetically structured by their associated individual hosts (not pool size) and the majority of SNPs were shared by all pools within an infrapopulation. Together, these results suggest that the patterns observed are driven by evolutionary processes occurring at the infrapopulation level and are not technical signals due to pool size. In total, despite the challenges presented by microscopic symbionts in HTS studies, this work highlights the value of both individual-level and infrapopulation-level sequencing toward our understanding of host-symbiont coevolution at multiple evolutionary scales.

15.
BMC Genomics ; 13: 428, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22925529

RESUMO

BACKGROUND: Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps) genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean cultivar 'Conrad' that contributes to the expression of partial resistance to multiple P. sojae isolates. RESULTS: In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad) and susceptible ('Sloan') genotypes. There were 1025 single nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. CONCLUSIONS: These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for resistance to P. sojae.


Assuntos
Glycine max/genética , Phytophthora/patogenicidade , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Haplótipos , Interações Hospedeiro-Parasita , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinação
16.
BMC Genomics ; 13: 6, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22226239

RESUMO

BACKGROUND: Bed bugs (Cimex lectularius) are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. RESULTS: We performed a next-generation RNA sequencing (RNA-Seq) experiment to find differentially expressed genes between pesticide-resistant (PR) and pesticide-susceptible (PS) strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs) was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs) and our previous 454 pyrosequenced database (21,088 ESTs). The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase) involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2) revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. CONCLUSIONS: We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in C. lectularius. Future research that is targeted towards RNA interference (RNAi) on the identified metabolic targets such as cytochrome P450s and cuticular proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in C. lectularius.


Assuntos
Percevejos-de-Cama/genética , Resistência a Medicamentos/genética , Inseticidas/química , Animais , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Mutação , Análise de Sequência de RNA , Transcriptoma
17.
PLoS One ; 16(4): e0250284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901201

RESUMO

Water deficit limits plant growth and development, resulting in quality loss of horticultural crops. However, there is limited information on gene regulation and signaling pathways related to water deficit stress response at multiple time points. The objective of this research was to investigate global gene expression patterns under water deficit stress to provide an insight into how petunia (Petunia ×hybrida 'Mitchell Diploid') responded in the process of stress. Nine-week-old petunias were irrigated daily or placed under water stress by withholding water. Stressed plants reduced stomatal conductance after five days of water deficit, indicating they perceived stress and initiated stress response mechanisms. To analyze transcriptomic changes at the early stage of water deficit, leaf tissue samples were collected 1, 3, and 5 days after water was withheld for RNA sequencing. Under water deficit stress, 154, 3611, and 980 genes were upregulated and 41, 2806, and 253 genes were downregulated on day 1, 3, and 5, respectively. Gene Ontology analysis revealed that redox homeostasis processes through sulfur and glutathione metabolism pathways, and hormone signal transduction, especially abscisic acid and ethylene, were enriched under water deficit stress. Thirty-four transcription factor families were identified, including members of AP2/ERF, NAC, MYB-related, C2H2, and bZIP families, and TFs in AP2/ERF family was the most abundant in petunia. Interestingly, only one member of GRFs was upregulated on day 1, while most of TFs were differentially expressed on day 3 and/or 5. The transcriptome data from this research will provide valuable molecular resources for understanding the early stages of water stress-responsive networks as well as engineering petunia with enhanced water stress tolerance.


Assuntos
Desidratação/genética , Regulação da Expressão Gênica de Plantas , Petunia/genética , RNA-Seq/métodos , Estresse Fisiológico/genética , Transcriptoma , Análise por Conglomerados , Regulação para Baixo , Ontologia Genética , Homeostase/genética , Petunia/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
18.
Plants (Basel) ; 9(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171842

RESUMO

Stress-induced microspore embryogenesis is a widely employed method to achieve homozygosity in plant breeding programs. However, the molecular mechanisms that govern gametophyte de- and redifferentiation are understood poorly. In this study, RNA-Seq was used to evaluate global changes across the microspore transcriptome of soybean (Glycine max [L.] Merrill) as a consequence of pretreatment low-temperature stress. Expression analysis revealed more than 20,000 differentially expressed genes between treated and control microspore populations. Functional enrichment illustrated that many of these genes (e.g., those encoding heat shock proteins and cytochrome P450s) were upregulated to maintain cellular homeostasis through the mitigation of oxidative damage. Moreover, transcripts corresponding to saccharide metabolism, vacuolar transport, and other pollen-related developmental processes were drastically downregulated among treated microspores. Temperature stress also triggered cell wall modification and cell proliferation-characteristics that implied putative commitment to an embryonic pathway. These findings collectively demonstrate that pretreatment cold stress induces soybean microspore reprogramming through suppression of the gametophytic program while concomitantly driving sporophytic development.

19.
Evol Appl ; 13(8): 1949-1967, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908597

RESUMO

Globally, farmers cultivate and maintain crop landraces (i.e., traditional varieties). Landraces contain unique diversity shaped in part by natural and human-mediated selection and are an indispensable resource for farmers. Since environmental conditions change with elevation, crop landraces grown along elevational gradients have provided ideal locations to explore patterns of local adaptation. To further probe traits underlying this differentiation, transcriptome signatures can help provide a foundation for understanding the ways in which functional genetic diversity may be shaped by environment. In this study, we returned to an elevational gradient in Chiapas, Mexico, to assess transcriptional differentiation of genes underlying UV-B protection in locally adapted maize landraces from multiple elevations. We collected and planted landraces from three elevational zones (lowland, approximately 600 m; midland, approximately 1,550 m; highland approximately 2,100 m) in a common garden at 1,531 m. Using RNA-seq data derived from leaf tissue, we performed differential expression analysis between maize from these distinct elevations. Highland and lowland landraces displayed differential expression in phenylpropanoid and flavonoid biosynthesis genes involved in the production of UV-B protectants and did so at a rate greater than expected based on observed background transcriptional differentiation across the genome. These findings provide evidence for the differentiation of suites of genes involved in complex ecologically relevant pathways. Thus, while neutral evolutionary processes may have played a role in the observed patterns of differentiation, UV-B may have also acted as a selective pressure to differentiate maize landraces in the region. Studies of the distribution of functional crop genetic diversity across variable landscapes can aid us in understanding the response of diversity to abiotic/biotic change and, ultimately, may facilitate its conservation and utilization.

20.
BMC Genomics ; 10: 475, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19832984

RESUMO

BACKGROUND: Meiotic recombination alters frequency and distribution of genetic variation, impacting genetics and evolution. In the budding yeast, DNA double strand breaks (DSBs) and D loops form either crossovers (COs) or non-crossovers (NCOs), which occur at many sites in the genome. Differences at the nucleotide level associated with COs and NCOs enable us to detect these recombination events and their distributions. RESULTS: We used high throughput sequencing to uncover over 46 thousand single nucleotide polymorphisms (SNPs) between two budding yeast strains and investigated meiotic recombinational events. We provided a detailed analysis of CO and NCO events, including number, size range, and distribution on chromosomes. We have detected 91 COs, very close to the average number from previous genetic studies, as well as 21 NCO events and mapped the positions of these events with high resolution. We have obtained DNA sequence-level evidence for a wide range of sizes of chromosomal regions involved in CO and NCO events. We show that a large fraction of the COs are accompanied by gene conversion (GC), indicating that meiotic recombination changes allelic frequencies, in addition to redistributing existing genetic variations. CONCLUSION: This work is the first reported study of meiotic recombination using high throughput sequencing technologies. Our results show that high-throughput sequencing is a sensitive method to uncover at single-base resolution details of CO and NCO events, including some complex patterns, providing new clues about the mechanism of this fundamental process.


Assuntos
Troca Genética , Conversão Gênica , Genoma Fúngico , Meiose , Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , DNA Fúngico/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA