Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sensors (Basel) ; 22(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35957340

RESUMO

Label-free field-effect transistor-based immunosensors are promising candidates for proteomics and peptidomics-based diagnostics and therapeutics due to their high multiplexing capability, fast response time, and ability to increase the sensor sensitivity due to the short length of peptides. In this work, planar junctionless field-effect transistor sensors (FETs) were fabricated and characterized for pH sensing. The device with SiO2 gate oxide has shown voltage sensitivity of 41.8 ± 1.4, 39.9 ± 1.4, 39.0 ± 1.1, and 37.6 ± 1.0 mV/pH for constant drain currents of 5, 10, 20, and 50 nA, respectively, with a drain to source voltage of 0.05 V. The drift analysis shows a stability over time of -18 nA/h (pH 7.75), -3.5 nA/h (pH 6.84), -0.5 nA/h (pH 4.91), 0.5 nA/h (pH 3.43), corresponding to a pH drift of -0.45, -0.09, -0.01, and 0.01 per h. Theoretical modeling and simulation resulted in a mean value of the surface states of 3.8 × 1015/cm2 with a standard deviation of 3.6 × 1015/cm2. We have experimentally verified the number of surface sites due to APTES, peptide, and protein immobilization, which is in line with the theoretical calculations for FETs to be used for detecting peptide-protein interactions for future applications.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , Técnicas Biossensoriais/métodos , Eletricidade , Imunoensaio , Dióxido de Silício
2.
Soft Matter ; 13(28): 4856-4863, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28628178

RESUMO

Aqueous sessile drops are launched from a super-hydrophobic surface by electric actuation in an electrowetting configuration with a voltage pulse of variable duration. We show that the jump height, i.e. the amount of energy that is transferred from surface energy to the translational degree of freedom, depends not only on the applied voltage but also in a periodic manner on the duration of the actuation pulse. Specifically, we find that the jump height for a pulse of optimized duration is almost twice as high as the one obtained upon turning off the voltage after equilibration of the drop under electrowetting. Representing the drop by a simple oscillator, we establish a relation between the eigenfrequency of the drop and the optimum actuation time required for most efficient energy conversion. From a general perspective, our experiments illustrate a generic concept how timed actuation in combination with inertia can enhance the flexibility and efficiency of drop manipulation operations.

3.
Appl Opt ; 54(21): 6482-90, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26367832

RESUMO

A method for determining the spatially resolved acoustic field inside a water-filled microchannel is presented. The acoustic field, both amplitude and phase, is determined by measuring the change of the index of refraction of the water due to local pressure using stroboscopic illumination. Pressure distributions are measured for the fundamental pressure resonance in the water and two higher harmonic modes. By combining measurement at a range of excitation frequencies, a frequency map of modes is made, from which the spectral line width and Q-factor of individual resonances can be obtained.

4.
Lab Chip ; 10(8): 986-90, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20358104

RESUMO

We present an electrokinetic label-free biomolecular screening chip (Glass/PDMS) to screen up to 10 samples simultaneously using surface plasmon resonance imaging (iSPR). This approach reduces the duration of an experiment when compared to conventional experimental methods. This new device offers a high degree of parallelization not only for analyte samples, but also for multiplex analyte interactions where up to 90 ligands are immobilized on the sensing surface. The proof of concept has been demonstrated with well-known biomolecular interactant pairs. The new chip can be used for high throughput screening applications and kinetics parameter extraction, simultaneously, of interactant-protein complex formation.


Assuntos
Eletrônica/instrumentação , Imunoensaio/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Mapeamento de Interação de Proteínas/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Cinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem
5.
Lab Chip ; 9(10): 1461-7, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19417915

RESUMO

We report the utility of structured elastomeric membranes (SEMs) as a multifunctional microfluidic tool. These structured membranes are part of a two-layer microfluidic device, analogous to membrane valves, with the novelty that they incorporate topographical features on the roof of the fluid channel. We demonstrate that when the topographical features are recessed into the roof of the fluid channel, actuation of the membrane leads to effective confinement of fluids down to femtolitres in preformed microfluidic containers. Thus, the SEMs in this case function as fluidic traps that could be coupled to microfluidic networks for rapid and repeated flushing of solvents. Alternatively, when the topographical features on the roof protrude into the fluid channel, we demonstrate that the SEMs can be used to pattern proteins and cells in microchannels. Thus in this case, the SEMs serve as fluidic stamps for functionalizing microchannel surfaces. In addition, we show that the trap or pattern shape and size can be manipulated simply by varying the topography on the elastomeric membrane. Since SEMs, membrane valves and pumps use similar fabrication technology, we believe that SEMs can be integrated into microfluidic large-scale circuits for biotechnological applications.


Assuntos
Elastômeros/química , Membranas Artificiais , Técnicas Analíticas Microfluídicas/instrumentação , Células , Proteínas , Reprodutibilidade dos Testes
6.
Biomicrofluidics ; 10(3): 034113, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27375818

RESUMO

Establishing and maintaining concentration gradients that are stable in space and time is critical for applications that require screening the adsorption behavior of organic or inorganic species onto solid surfaces for wide ranges of fluid compositions. In this work, we present a design of a simple and compact microfluidic device based on steady-state diffusion of the analyte, between two control channels where liquid is pumped through. The device generates a near-linear distribution of concentrations. We demonstrate this via experiments with dye solutions and comparison to finite-element numerical simulations. In a subsequent step, the device is combined with total internal reflection ellipsometry to study the adsorption of (cat)ions on silica surfaces from CsCl solutions at variable pH. Such a combined setup permits a fast determination of an adsorption isotherm. The measured optical thickness is compared to calculations from a triple layer model for the ion distribution, where surface complexation reactions of the silica are taken into account. Our results show a clear enhancement of the ion adsorption with increasing pH, which can be well described with reasonable values for the equilibrium constants of the surface reactions.

7.
Biomicrofluidics ; 9(4): 044116, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26339316

RESUMO

We analyze a recently introduced approach for the sorting of aqueous drops with biological content immersed in oil, using a microfluidic chip that combines the functionality of electrowetting with the high throughput of two-phase flow microfluidics. In this electrostatic sorter, three co-planar electrodes covered by a thin dielectric layer are placed directly below the fluidic channel. Switching the potential of the central electrode creates an electrical guide that leads the drop to the desired outlet. The generated force, which deflects the drop, can be tuned via the voltage. The working principle is based on a contrast in conductivity between the drop and the continuous phase, which ensures successful operation even for drops of highly conductive biological media like phosphate buffered saline. Moreover, since the electric field does not penetrate the drop, its content is protected from electrical currents and Joule heating. A simple capacitive model allows quantitative prediction of the electrostatic forces exerted on drops. The maximum achievable sorting rate is determined by a competition between electrostatic and hydrodynamic forces. Sorting speeds up to 1200 per second are demonstrated for conductive drops of 160 pl in low viscosity oil.

8.
Nano Lett ; 8(7): 1785-90, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18393468

RESUMO

The transport behavior of lambda-DNA (48 kbp) in fused silica nanoslits is investigated upon application of electrical fields of different strengths. The slit dimensions are 20 nm in height, 3 microm in width, and 500 microm in length. With fields of 30 kV/m or below, the molecules move fluently through the slits, while at higher electrical fields, the DNA molecules move intermittently, resulting in a strongly reduced mobility. We propose that the behavior can be explained by mechanical and/or field-induced dielectrophoretic DNA trapping due to the surface roughness in the nanoslits. The observation of preferential pathways and trapping sites of the lambda-DNA molecules through the nanoslits supports this hypothesis and indicates that the classical viscous friction models to explain the DNA movement in nanoslits needs to be modified to include these effects. Preliminary experiments with the smaller XbaI-digested litmus-DNA (2.8 kbp) show that the behavior is size-dependent, suggesting that the high field electrophoresis in nanoslits can be used for DNA separation.


Assuntos
DNA/química , Nanoestruturas/química , DNA/ultraestrutura , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA