Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Biol Chem ; 299(3): 102975, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738787

RESUMO

Ca2+ and voltage-activated K+ (BK) channels are ubiquitous ion channels that can be modulated by accessory proteins, including ß, γ, and LINGO1 BK subunits. In this study, we utilized a combination of site-directed mutagenesis, patch clamp electrophysiology, and molecular modeling to investigate if the biophysical properties of BK currents were affected by coexpression of LINGO2 and to examine how they are regulated by oxidation. We demonstrate that LINGO2 is a regulator of BK channels, since its coexpression with BK channels yields rapid inactivating currents, the activation of which is shifted ∼-30 mV compared to that of BKα currents. Furthermore, we show the oxidation of BK:LINGO2 currents (by exposure to epifluorescence illumination or chloramine-T) abolished inactivation. The effect of illumination depended on the presence of GFP, suggesting that it released free radicals which oxidized cysteine or methionine residues. In addition, the oxidation effects were resistant to treatment with the cysteine-specific reducing agent DTT, suggesting that methionine rather than cysteine residues may be involved. Our data with synthetic LINGO2 tail peptides further demonstrate that the rate of inactivation was slowed when residues M603 or M605 were oxidized, and practically abolished when both were oxidized. Taken together, these data demonstrate that both methionine residues in the LINGO2 tail mediate the effect of oxidation on BK:LINGO2 channels. Our molecular modeling suggests that methionine oxidation reduces the lipophilicity of the tail, thus preventing it from occluding the pore of the BK channel.


Assuntos
Cisteína , Canais de Potássio Ativados por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cisteína/metabolismo , Oxirredução , Peptídeos/metabolismo , Metionina/metabolismo , Cálcio/metabolismo
2.
PLoS Comput Biol ; 19(6): e1011257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363928

RESUMO

Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart physiology challenging. A patient-specific anatomical heart model, or digital twin, was created. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart contraction was coupled with the circulatory system, simulated with CircAdapt, while accounting for the effect of the pericardium on cardiac motion. The four-chamber electromechanics framework resulted in 117 parameters of interest. The model was broken into five hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian processes emulators (GPEs) that were then used to perform a global sensitivity analysis (GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis. We identified 45 out of 117 parameters that were important for whole heart function. We performed a GSA over these 45 parameters and identified the systemic and pulmonary peripheral resistance as being critical parameters for a wide range of volumetric and hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide a robust method for mapping between cellular properties and clinical measurements. This could be applied to identify parameters that can be calibrated in patient-specific models or digital twins, and to link cellular function to clinical indexes.


Assuntos
Ventrículos do Coração , Coração , Humanos , Coração/fisiologia , Átrios do Coração , Modelos Cardiovasculares
3.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190345, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448072

RESUMO

In patients with atrial fibrillation, local activation time (LAT) maps are routinely used for characterizing patient pathophysiology. The gradient of LAT maps can be used to calculate conduction velocity (CV), which directly relates to material conductivity and may provide an important measure of atrial substrate properties. Including uncertainty in CV calculations would help with interpreting the reliability of these measurements. Here, we build upon a recent insight into reduced-rank Gaussian processes (GPs) to perform probabilistic interpolation of uncertain LAT directly on human atrial manifolds. Our Gaussian process manifold interpolation (GPMI) method accounts for the topology of the atrium, and allows for calculation of statistics for predicted CV. We demonstrate our method on two clinical cases, and perform validation against a simulated ground truth. CV uncertainty depends on data density, wave propagation direction and CV magnitude. GPMI is suitable for probabilistic interpolation of other uncertain quantities on non-Euclidean manifolds. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Função Atrial , Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Distribuição Normal , Probabilidade
4.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190349, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448065

RESUMO

Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterize uncertainty in model inputs and how that propagates through to outputs or predictions; examples of this can be seen in the papers of this issue. In this review and perspective piece, we draw attention to an important and under-addressed source of uncertainty in our predictions-that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here, we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes and autoregressive-moving-average models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Fenômenos Eletrofisiológicos , Modelos Cardiovasculares , Calibragem , Canais Iônicos/metabolismo
5.
J Chem Phys ; 149(17): 174114, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30408987

RESUMO

Three active learning schemes are used to generate training data for Gaussian process interpolation of intermolecular potential energy surfaces. These schemes aim to achieve the lowest predictive error using the fewest points and therefore act as an alternative to the status quo methods involving grid-based sampling or space-filling designs like Latin hypercubes (LHC). Results are presented for three molecular systems: CO2-Ne, CO2-H2, and Ar3. For each system, two of the active learning schemes proposed notably outperform LHC designs of comparable size, and in two of the systems, produce an error value an order of magnitude lower than the one produced by the LHC method. The procedures can be used to select a subset of points from a large pre-existing data set, to select points to generate data de novo, or to supplement an existing data set to improve accuracy.

6.
J Chem Phys ; 147(16): 161706, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096507

RESUMO

A procedure is proposed to produce intermolecular potential energy surfaces from limited data. The procedure involves generation of geometrical configurations using a Latin hypercube design, with a maximin criterion, based on inverse internuclear distances. Gaussian processes are used to interpolate the data, using over-specified inverse molecular distances as covariates, greatly improving the interpolation. Symmetric covariance functions are specified so that the interpolation surface obeys all relevant symmetries, reducing prediction errors. The interpolation scheme can be applied to many important molecular interactions with trivial modifications. Results are presented for three systems involving CO2, a system with a deep energy minimum (HF-HF), and a system with 48 symmetries (CH4-N2). In each case, the procedure accurately predicts an independent test set. Training this method with high-precision ab initio evaluations of the CO2-CO interaction enables a parameter-free, first-principles prediction of the CO2-CO cross virial coefficient that agrees very well with experiments.

7.
Mol Cancer ; 15: 29, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097645

RESUMO

BACKGROUND: Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. METHODS: Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. RESULTS: We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. CONCLUSIONS: In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.


Assuntos
Carcinogênese/patologia , Catepsinas/antagonistas & inibidores , Nitrilas/farmacologia , Inibidores de Proteases/farmacologia , Animais , Disponibilidade Biológica , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Catepsinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Espaço Intracelular/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Neovascularização Fisiológica/efeitos dos fármacos , Nitrilas/química , Inibidores de Proteases/química , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Theor Biol ; 408: 167-178, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27528447

RESUMO

Optimal sex allocation theory is one of the most intricately developed areas of evolutionary ecology. Under a range of conditions, particularly under population sub-division, selection favours sex being allocated to offspring non-randomly, generating non-binomial variances of offspring group sex ratios. Detecting non-binomial sex allocation is complicated by stochastic developmental mortality, as offspring sex can often only be identified on maturity with the sex of non-maturing offspring remaining unknown. We show that current approaches for detecting non-binomiality have limited ability to detect non-binomial sex allocation when developmental mortality has occurred. We present a new procedure using an explicit model of sex allocation and mortality and develop a Bayesian model selection approach (available as an R package). We use the double and multiplicative binomial distributions to model over- and under-dispersed sex allocation and show how to calculate Bayes factors for comparing these alternative models to the null hypothesis of binomial sex allocation. The ability to detect non-binomial sex allocation is greatly increased, particularly in cases where mortality is common. The use of Bayesian methods allows for the quantification of the evidence in favour of each hypothesis, and our modelling approach provides an improved descriptive capability over existing approaches. We use a simulation study to demonstrate substantial improvements in power for detecting non-binomial sex allocation in situations where current methods fail, and we illustrate the approach in real scenarios using empirically obtained datasets on the sexual composition of groups of gregarious parasitoid wasps.


Assuntos
Evolução Biológica , Modelos Biológicos , Razão de Masculinidade , Animais , Teorema de Bayes , Simulação por Computador , Cadeias de Markov , Método de Monte Carlo , Mortalidade , Vespas/fisiologia
9.
Faraday Discuss ; 192: 415-436, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27471835

RESUMO

Impurities from the CCS chain can greatly influence the physical properties of CO2. This has important design, safety and cost implications for the compression, transport and storage of CO2. There is an urgent need to understand and predict the properties of impure CO2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO2 binary mixtures with N2, O2, Ar and H2. A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO2 and relevant impurities, taking N2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO2, without fitting to experimental data.

10.
Biol Chem ; 396(8): 867-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25872877

RESUMO

Cathepsin S is a member of the cysteine cathepsin protease family. It is a lysosomal protease which can promote degradation of damaged or unwanted proteins in the endo-lysosomal pathway. Additionally, it has more specific roles such as MHC class II antigen presentation, where it is important in the degradation of the invariant chain. Unsurprisingly, mis-regulation has implicated cathepsin S in a variety of pathological processes including arthritis, cancer, and cardiovascular disease, where it becomes secreted and can act on extracellular substrates. In comparison to many other cysteine cathepsin family members, cathepsin S has uniquely restricted tissue expression and is more stable at a neutral pH, which supports its involvement and importance in localised disease microenvironments. In this review, we examine the known involvement of cathepsin S in disease, particularly with respect to recent work indicating its role in mediating pain, diabetes, and cystic fibrosis. We provide an overview of current literature with regards cathepsin S as a therapeutic target, as well as its role and potential as a predictive diagnostic and/or prognostic marker in these diseases.


Assuntos
Catepsinas/metabolismo , Animais , Artrite/diagnóstico , Artrite/metabolismo , Artrite/patologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico
11.
Syst Biol ; 63(4): 457-79, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24562813

RESUMO

Lobsters are a ubiquitous and economically important group of decapod crustaceans that include the infraorders Polychelida, Glypheidea, Astacidea and Achelata. They include familiar forms such as the spiny, slipper, clawed lobsters and crayfish and unfamiliar forms such as the deep-sea and "living fossil" species. The high degree of morphological diversity among these infraorders has led to a dynamic classification and conflicting hypotheses of evolutionary relationships. In this study, we estimated phylogenetic relationships among the major groups of all lobster families and 94% of the genera using six genes (mitochondrial and nuclear) and 195 morphological characters across 173 species of lobsters for the most comprehensive sampling to date. Lobsters were recovered as a non-monophyletic assemblage in the combined (molecular + morphology) analysis. All families were monophyletic, with the exception of Cambaridae, and 7 of 79 genera were recovered as poly- or paraphyletic. A rich fossil history coupled with dense taxon coverage allowed us to estimate and compare divergence times and origins of major lineages using two drastically different approaches. Age priors were constructed and/or included based on fossil age information or fossil discovery, age, and extant species count data. Results from the two approaches were largely congruent across deep to shallow taxonomic divergences across major lineages. The origin of the first lobster-like decapod (Polychelida) was estimated in the Devonian (∼409-372 Ma) with all infraorders present in the Carboniferous (∼353-318 Ma). Fossil calibration subsampling studies examined the influence of sampling density (number of fossils) and placement (deep, middle, and shallow) on divergence time estimates. Results from our study suggest including at least 1 fossil per 10 operational taxonomic units (OTUs) in divergence dating analyses. [Dating; decapods; divergence; lobsters; molecular; morphology; phylogenetics.].


Assuntos
Decápodes/anatomia & histologia , Decápodes/classificação , Fósseis , Filogenia , Animais , Proteínas de Artrópodes/genética , Evolução Biológica , Decápodes/genética , Tempo
12.
Comput Biol Med ; 153: 106528, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634600

RESUMO

BACKGROUND: Personalised computer models are increasingly used to diagnose cardiac arrhythmias and tailor treatment. Patient-specific models of the left atrium are often derived from pre-procedural imaging of anatomy and fibrosis. These images contain noise that can affect simulation predictions. There are few computationally tractable methods for propagating uncertainties from images to clinical predictions. METHOD: We describe the left atrium anatomy using our Bayesian shape model that captures anatomical uncertainty in medical images and has been validated on 63 independent clinical images. This algorithm describes the left atrium anatomy using Nmodes=15 principal components, capturing 95% of the shape variance and calculated from 70 clinical cardiac magnetic resonance (CMR) images. Latent variables encode shape uncertainty: we evaluate their posterior distribution for each new anatomy. We assume a normally distributed prior. We use the unscented transform to sample from the posterior shape distribution. For each sample, we assign the local material properties of the tissue using the projection of late gadolinium enhancement CMR (LGE-CMR) onto the anatomy to estimate local fibrosis. To test which activation patterns an atrium can sustain, we perform an arrhythmia simulation for each sample. We consider 34 possible outcomes (31 macro-re-entries, functional re-entry, atrial fibrillation, and non-sustained arrhythmia). For each sample, we determine the outcome by comparing pre- and post-ablation activation patterns following a cross-field stimulus. RESULTS: We create patient-specific atrial electrophysiology models of ten patients. We validate the mean and standard deviation maps from the unscented transform with the same statistics obtained with 12,000 Monte Carlo (ground truth) samples. We found discrepancies <3% and <2% for the mean and standard deviation for fibrosis burden and activation time, respectively. For each patient case, we then compare the predicted outcome from a model built on the clinical data (deterministic approach) with the probability distribution obtained from the simulated samples. We found that the deterministic approach did not predict the most likely outcome in 80% of the cases. Finally, we estimate the influence of each source of uncertainty independently. Fixing the anatomy to the posterior mean and maintaining uncertainty in fibrosis reduced the prediction of self-terminating arrhythmias from ≃14% to ≃7%. Keeping the fibrosis fixed to the sample mean while retaining uncertainty in shape decreased the prediction of substrate-driven arrhythmias from ≃33% to ≃18% and increased the prediction of macro-re-entries from ≃54% to ≃68%. CONCLUSIONS: We presented a novel method for propagating shape uncertainty in atrial models through to uncertainty in numerical simulations. The algorithm takes advantage of the unscented transform to compute the output distribution of the outcomes. We validated the unscented transform as a viable sampling strategy to deal with anatomy uncertainty. We then showed that the prediction computed with a deterministic model does not always coincide with the most likely outcome. Finally, we found that shape uncertainty affects the predictions of macro-re-entries, while fibrosis uncertainty affects the predictions of functional re-entries.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Meios de Contraste , Incerteza , Teorema de Bayes , Gadolínio , Átrios do Coração , Imageamento por Ressonância Magnética/métodos , Fibrose
13.
Syst Biol ; 60(1): 16-31, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21051775

RESUMO

Estimation of divergence times is usually done using either the fossil record or sequence data from modern species. We provide an integrated analysis of palaeontological and molecular data to give estimates of primate divergence times that utilize both sources of information. The number of preserved primate species discovered in the fossil record, along with their geological age distribution, is combined with the number of extant primate species to provide initial estimates of the primate and anthropoid divergence times. This is done by using a stochastic forwards-modeling approach where speciation and fossil preservation and discovery are simulated forward in time. We use the posterior distribution from the fossil analysis as a prior distribution on node ages in a molecular analysis. Sequence data from two genomic regions (CFTR on human chromosome 7 and the CYP7A1 region on chromosome 8) from 15 primate species are used with the birth-death model implemented in mcmctree in PAML to infer the posterior distribution of the ages of 14 nodes in the primate tree. We find that these age estimates are older than previously reported dates for all but one of these nodes. To perform the inference, a new approximate Bayesian computation (ABC) algorithm is introduced, where the structure of the model can be exploited in an ABC-within-Gibbs algorithm to provide a more efficient analysis.


Assuntos
Evolução Biológica , Fósseis , Primatas/classificação , Primatas/genética , Animais , Teorema de Bayes , Evolução Molecular , Humanos , Cadeias de Markov , Método de Monte Carlo , Paleontologia/métodos , Filogenia
14.
Sci Rep ; 12(1): 16572, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195766

RESUMO

Models of electrical excitation and recovery in the heart have become increasingly detailed, but have yet to be used routinely in the clinical setting to guide personalized intervention in patients. One of the main challenges is calibrating models from the limited measurements that can be made in a patient during a standard clinical procedure. In this work, we propose a novel framework for the probabilistic calibration of electrophysiology parameters on the left atrium of the heart using local measurements of cardiac excitability. Parameter fields are represented as Gaussian processes on manifolds and are linked to measurements via surrogate functions that map from local parameter values to measurements. The posterior distribution of parameter fields is then obtained. We show that our method can recover parameter fields used to generate localised synthetic measurements of effective refractory period. Our methodology is applicable to other measurement types collected with clinical protocols, and more generally for calibration where model parameters vary over a manifold.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração , Calibragem , Eletrofisiologia Cardíaca , Humanos , Distribuição Normal
15.
Front Physiol ; 12: 765622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671278

RESUMO

[This corrects the article DOI: 10.3389/fphys.2021.693015.].

16.
Front Physiol ; 12: 693015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366883

RESUMO

Calibration of cardiac electrophysiology models is a fundamental aspect of model personalization for predicting the outcomes of cardiac therapies, simulation testing of device performance for a range of phenotypes, and for fundamental research into cardiac function. Restitution curves provide information on tissue function and can be measured using clinically feasible measurement protocols. We introduce novel "restitution curve emulators" as probabilistic models for performing model exploration, sensitivity analysis, and Bayesian calibration to noisy data. These emulators are built by decomposing restitution curves using principal component analysis and modeling the resulting coordinates with respect to model parameters using Gaussian processes. Restitution curve emulators can be used to study parameter identifiability via sensitivity analysis of restitution curve components and rapid inference of the posterior distribution of model parameters given noisy measurements. Posterior uncertainty about parameters is critical for making predictions from calibrated models, since many parameter settings can be consistent with measured data and yet produce very different model behaviors under conditions not effectively probed by the measurement protocols. Restitution curve emulators are therefore promising probabilistic tools for calibrating electrophysiology models.

17.
IEEE Trans Biomed Eng ; 67(1): 99-109, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969911

RESUMO

OBJECTIVE: Local activation time (LAT) mapping of the atria is important for targeted treatment of atrial arrhythmias, but current methods do not interpolate on the atrial manifold and neglect uncertainties associated with LAT observations. In this paper, we describe novel methods to, first, quantify uncertainties in LAT arising from bipolar electrogram analysis and assignment of electrode recordings to the anatomical mesh, second, interpolate uncertain LAT measurements directly on left atrial manifolds to obtain complete probabilistic activation maps, and finally, interpolate LAT jointly across both the manifold and different S1-S2 pacing protocols. METHODS: A modified center of mass approach was used to process bipolar electrograms, yielding a LAT estimate and error distribution from the electrogram morphology. An error distribution for assigning measurements to the anatomical mesh was estimated. Probabilistic LAT maps were produced by interpolating on a left atrial manifold using Gaussian Markov random fields, taking into account observation errors and characterizing LAT predictions by their mean and standard deviation. This approach was extended to interpolate across S1-S2 pacing protocols. RESULTS: We evaluated our approach using recordings from three patients undergoing atrial ablation. Cross-validation showed consistent and accurate prediction of LAT observations both at different locations on the left atrium and for different S1-S2 intervals. SIGNIFICANCE: Interpolation of scalar and vector fields across anatomical structures from point measurements is a challenging problem in biomedical engineering, compounded by uncertainties in measurements and meshes. New methods and approaches are required, and in this paper, we have demonstrated an effective method for probabilistic interpolation of uncertain LAT.


Assuntos
Função Atrial/fisiologia , Técnicas Eletrofisiológicas Cardíacas/métodos , Átrios do Coração/diagnóstico por imagem , Modelos Estatísticos , Processamento de Sinais Assistido por Computador , Humanos
18.
Theor Popul Biol ; 75(4): 278-85, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19269300

RESUMO

The fossil record provides a lower bound on the primate divergence time of 54.8 million years ago, but does not provide an explicit estimate for the divergence time itself. We show how the pattern of diversification through the Cenozoic can be combined with a model for speciation to give a distribution for the age of the primates. The primate fossil record, the number of extant primate species, and information about the structure of the primate phylogenetic tree are combined to provide an estimate for the joint distribution of the primate and anthropoid divergence times. To take this information into account, we derive the structure of the birth-and-death process conditioned to have a subtree originate at a particular point in time. This process has a size-biased law and has an immortal line running from the root of the tree to the root of the subtree, with species on the spine having modified offspring and length distributions. We conclude that it is not possible, with this model, to rule out a Cretaceous origin for the primates.


Assuntos
Evolução Biológica , Primatas/genética , Animais , Fósseis , Primatas/classificação , Especificidade da Espécie
19.
J Oncol ; 2019: 3980273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346333

RESUMO

Cathepsin S (CTSS) has previously been implicated in a number of cancer types, where it is associated with poor clinical features and outcome. To date, patient outcome in breast cancer has not been examined with respect to this protease. Here, we carried out immunohistochemical (IHC) staining of CTSS using a breast cancer tissue microarray in patients who received adjuvant therapy. We scored CTSS expression in the epithelial and stromal compartments and evaluated the association of CTSS expression with matched clinical outcome data. We observed differences in outcome based on CTSS expression, with stromal-derived CTSS expression correlating with a poor outcome and epithelial CTSS expression associated with an improved outcome. Further subtype characterisation revealed high epithelial CTSS expression in TNBC patients with improved outcome, which remained consistent across two independent TMA cohorts. Further in silico gene expression analysis, using both in-house and publicly available datasets, confirmed these observations and suggested high CTSS expression may also be beneficial to outcome in ER-/HER2+ cancer. Furthermore, high CTSS expression was associated with the BL1 Lehmann subgroup, which is characterised by defects in DNA damage repair pathways and correlates with improved outcome. Finally, analysis of matching IHC analysis reveals an increased M1 (tumour destructive) polarisation in macrophage in patients exhibiting high epithelial CTSS expression. In conclusion, our observations suggest epithelial CTSS expression may be prognostic of improved outcome in TNBC. Improved outcome observed with HER2+ at the gene expression level furthermore suggests CTSS may be prognostic of improved outcome in ER- cancers as a whole. Lastly, from the context of these patients receiving adjuvant therapy and as a result of its association with BL1 subgroup CTSS may be elevated in patients with defects in DNA damage repair pathways, indicating it may be predictive of tumour sensitivity to DNA damaging agents.

20.
Oncotarget ; 6(30): 29725-39, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26358505

RESUMO

Cathepsins S (CatS) has been implicated in numerous tumourigenic processes and here we document for the first time its involvement in CCL2 regulation within the tumour microenvironment. Analysis of syngeneic tumours highlighted reduced infiltrating macrophages in CatS depleted tumours. Interrogation of tumours and serum revealed genetic ablation of CatS leads to the depletion of several pro-inflammatory chemokines, most notably, CCL2. This observation was validated in vitro, where shRNA depletion of CatS resulted in reduced CCL2 expression. This regulation is transcriptionally mediated, as evident from RT-PCR analysis and CCL2 promoter studies. We revealed that CatS regulation of CCL2 is modulated through CD74 (also known as the invariant chain), a known substrate of CatS and a mediator of NFkB activity. Furthermore, CatS and CCL2 show a strong clinical correlation in brain, breast and colon tumours. In summary, these results highlight a novel mechanism by which CatS controls CCL2, which may present a useful pharmacodynamic marker for CatS inhibition.


Assuntos
Antígenos de Diferenciação de Linfócitos B/genética , Catepsinas/genética , Quimiocina CCL2/genética , Antígenos de Histocompatibilidade Classe II/genética , Ativação Transcricional , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Western Blotting , Catepsinas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CCL2/metabolismo , Células HEK293 , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA