Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 143(1): 35-45, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20887891

RESUMO

Maintenance of skeletal muscle structure and function requires innervation by motor neurons, such that denervation causes muscle atrophy. We show that myogenin, an essential regulator of muscle development, controls neurogenic atrophy. Myogenin is upregulated in skeletal muscle following denervation and regulates expression of the E3 ubiquitin ligases MuRF1 and atrogin-1, which promote muscle proteolysis and atrophy. Deletion of myogenin from adult mice diminishes expression of MuRF1 and atrogin-1 in denervated muscle and confers resistance to atrophy. Mice lacking histone deacetylases (HDACs) 4 and 5 in skeletal muscle fail to upregulate myogenin and also preserve muscle mass following denervation. Conversely, forced expression of myogenin in skeletal muscle of HDAC mutant mice restores muscle atrophy following denervation. Thus, myogenin plays a dual role as both a regulator of muscle development and an inducer of neurogenic atrophy. These findings reveal a specific pathway for muscle wasting and potential therapeutic targets for this disorder.


Assuntos
Histona Desacetilases/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Miogenina/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitina-Proteína Ligases/genética , Animais , Atrofia , Camundongos , Camundongos Knockout , Proteínas com Motivo Tripartido
2.
Proc Natl Acad Sci U S A ; 109(38): 15330-5, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949648

RESUMO

Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor γ coactivator 1ß (PGC-1ß) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1ß gene encodes two microRNAs (miRNAs), miR-378 and miR-378*, which counterbalance the metabolic actions of PGC-1ß. Mice genetically lacking miR-378 and miR-378* are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378*, respectively, and are elevated in the livers of miR-378/378* KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378*, previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378* as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Adipócitos/citologia , Animais , Dióxido de Carbono/química , Cruzamentos Genéticos , Metabolismo Energético , Ácidos Graxos/química , Feminino , Deleção de Genes , Homeostase , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Modelos Genéticos , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Recombinação Genética , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição , Ativação Transcricional
3.
Proc Natl Acad Sci U S A ; 104(52): 20844-9, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18093911

RESUMO

The muscle-specific microRNAs, miR-1 and miR-133, play important roles in muscle growth and differentiation. Here, we show that the MEF2 transcription factor, an essential regulator of muscle development, directly activates transcription of a bicistronic primary transcript encoding miR-1-2 and 133a-1 via an intragenic muscle-specific enhancer located between the miR-1-2 and 133a-1 coding regions. This MEF2-dependent enhancer is activated in the linear heart tube during mouse embryogenesis and thereafter controls transcription throughout the atrial and ventricular chambers of the heart. MEF2 together with MyoD also regulates the miR-1-2/-133a-1 intragenic enhancer in the somite myotomes and in all skeletal muscle fibers during embryogenesis and adulthood. A similar muscle-specific intragenic enhancer controls transcription of the miR-1-1/-133a-2 locus. These findings reveal a common architecture of regulatory elements associated with the miR-1/-133 genes and underscore the central role of MEF2 as a regulator of the transcriptional and posttranscriptional pathways that control cardiac and skeletal muscle development.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/fisiologia , Transcrição Gênica , Animais , Deleção de Genes , Coração/embriologia , Fatores de Transcrição MEF2 , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Miocárdio/metabolismo
4.
J Clin Invest ; 122(6): 2054-65, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22546853

RESUMO

Skeletal muscle injury activates adult myogenic stem cells, known as satellite cells, to initiate proliferation and differentiation to regenerate new muscle fibers. The skeletal muscle-specific microRNA miR-206 is upregulated in satellite cells following muscle injury, but its role in muscle regeneration has not been defined. Here, we show that miR-206 promotes skeletal muscle regeneration in response to injury. Genetic deletion of miR-206 in mice substantially delayed regeneration induced by cardiotoxin injury. Furthermore, loss of miR-206 accelerated and exacerbated the dystrophic phenotype in a mouse model of Duchenne muscular dystrophy. We found that miR-206 acts to promote satellite cell differentiation and fusion into muscle fibers through suppressing a collection of negative regulators of myogenesis. Our findings reveal an essential role for miR-206 in satellite cell differentiation during skeletal muscle regeneration and indicate that miR-206 slows progression of Duchenne muscular dystrophy.


Assuntos
Diferenciação Celular , MicroRNAs/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Animais , Cardiotoxinas/efeitos adversos , Cardiotoxinas/farmacologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Células Satélites de Músculo Esquelético/patologia
5.
Curr Opin Cell Biol ; 21(3): 461-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19278845

RESUMO

Cardiac and skeletal muscle development are controlled by evolutionarily conserved networks of transcription factors that coordinate the expression of genes involved in muscle growth, morphogenesis, differentiation, and contractility. In addition to regulating the expression of protein-coding genes, recent studies have revealed that myogenic transcription factors control the expression of a collection of microRNAs, which act through multiple mechanisms to modulate muscle development and function. In some cases, microRNAs fine-tune the expression of target mRNAs, whereas in other cases they function as 'on-off' switches. MicroRNA control of gene expression appears to be especially important during cardiovascular and skeletal muscle diseases, in which microRNAs participate in stress-dependent remodeling of striated muscle tissues. We review findings that point to the importance of microRNA-mediated control of gene expression during muscle development and disease, and consider the potential of microRNAs as therapeutic targets.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias/genética , MicroRNAs/fisiologia , Desenvolvimento Muscular/genética , Músculos/metabolismo , Miocárdio/metabolismo , Animais , Cardiopatias/fisiopatologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Science ; 326(5959): 1549-54, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20007902

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by loss of motor neurons, denervation of target muscles, muscle atrophy, and paralysis. Understanding ALS pathogenesis may require a fuller understanding of the bidirectional signaling between motor neurons and skeletal muscle fibers at neuromuscular synapses. Here, we show that a key regulator of this signaling is miR-206, a skeletal muscle-specific microRNA that is dramatically induced in a mouse model of ALS. Mice that are genetically deficient in miR-206 form normal neuromuscular synapses during development, but deficiency of miR-206 in the ALS mouse model accelerates disease progression. miR-206 is required for efficient regeneration of neuromuscular synapses after acute nerve injury, which probably accounts for its salutary effects in ALS. miR-206 mediates these effects at least in part through histone deacetylase 4 and fibroblast growth factor signaling pathways. Thus, miR-206 slows ALS progression by sensing motor neuron injury and promoting the compensatory regeneration of neuromuscular synapses.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , MicroRNAs/metabolismo , Neurônios Motores/fisiologia , Músculo Esquelético/metabolismo , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiologia , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fatores de Crescimento de Fibroblastos/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Neurônios Motores/patologia , Denervação Muscular , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Regeneração Nervosa , Junção Neuromuscular/crescimento & desenvolvimento , Interferência de RNA , Transdução de Sinais , Ativação Transcricional , Regulação para Cima
7.
Genes Dev ; 22(23): 3242-54, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19015276

RESUMO

MicroRNAs (miRNAs) modulate gene expression by inhibiting mRNA translation and promoting mRNA degradation, but little is known of their potential roles in organ formation or function. miR-133a-1 and miR-133a-2 are identical, muscle-specific miRNAs that are regulated during muscle development by the SRF transcription factor. We show that mice lacking either miR-133a-1 or miR-133a-2 are normal, whereas deletion of both miRNAs causes lethal ventricular-septal defects in approximately half of double-mutant embryos or neonates; miR-133a double-mutant mice that survive to adulthood succumb to dilated cardiomyopathy and heart failure. The absence of miR-133a expression results in ectopic expression of smooth muscle genes in the heart and aberrant cardiomyocyte proliferation. These abnormalities can be attributed, at least in part, to elevated expression of SRF and cyclin D2, which are targets for repression by miR-133a. These findings reveal essential and redundant roles for miR-133a-1 and miR-133a-2 in orchestrating cardiac development, gene expression, and function and point to these miRNAs as critical components of an SRF-dependent myogenic transcriptional circuit.


Assuntos
Proliferação de Células/efeitos dos fármacos , MicroRNAs/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/fisiologia , Animais , Sequência de Bases , Ciclina D2 , Ciclinas/metabolismo , Regulação da Expressão Gênica , Genes cdc , Cardiopatias Congênitas/genética , Camundongos , Camundongos Knockout , Camundongos Mutantes , Dados de Sequência Molecular , Mutação
8.
Proc Natl Acad Sci U S A ; 103(48): 18255-60, 2006 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17108080

RESUMO

Diverse forms of injury and stress evoke a hypertrophic growth response in adult cardiac myocytes, which is characterized by an increase in cell size, enhanced protein synthesis, assembly of sarcomeres, and reactivation of fetal genes, often culminating in heart failure and sudden death. Given the emerging roles of microRNAs (miRNAs) in modulation of cellular phenotypes, we searched for miRNAs that were regulated during cardiac hypertrophy and heart failure. We describe >12 miRNAs that are up- or down-regulated in cardiac tissue from mice in response to transverse aortic constriction or expression of activated calcineurin, stimuli that induce pathological cardiac remodeling. Many of these miRNAs were similarly regulated in failing human hearts. Forced overexpression of stress-inducible miRNAs was sufficient to induce hypertrophy in cultured cardiomyocytes. Similarly, cardiac overexpression of miR-195, which was up-regulated during cardiac hypertrophy, resulted in pathological cardiac growth and heart failure in transgenic mice. These findings reveal an important role for specific miRNAs in the control of hypertrophic growth and chamber remodeling of the heart in response to pathological signaling and point to miRNAs as potential therapeutic targets in heart disease.


Assuntos
Cardiopatias/genética , Cardiopatias/fisiopatologia , MicroRNAs/genética , Estresse Fisiológico/genética , Animais , Regulação da Expressão Gênica , Cardiopatias/patologia , Humanos , Hipertrofia/genética , Ratos
9.
Proc Natl Acad Sci U S A ; 102(9): 3301-6, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15728366

RESUMO

The maintenance of photoreceptor cell polarity is compromised by the rhodopsin mutations causing the human disease autosomal dominant retinitis pigmentosa. The severe form mutations occur in the C-terminal sorting signal of rhodopsin, VXPX-COOH. Here, we report that this sorting motif binds specifically to the small GTPase ARF4, a member of the ARF family of membrane budding and protein sorting regulators. The effects of blocking ARF4 action were functionally equivalent to the effects of blocking the rhodopsin C-terminal sorting signal. ARF4 was essential for the generation of post-Golgi carriers targeted to the rod outer segments of retinal photoreceptors. Thus, the severe retinitis pigmentosa alleles that affect the rhodopsin sorting signal interfere with interactions between ARF4 and rhodopsin, leading to aberrant trafficking and initiation of retinal degeneration.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Mutação , Rodopsina/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Complexo de Golgi/metabolismo , Microscopia Confocal , Ligação Proteica , Transporte Proteico , Ranidae , Espécies Reativas de Oxigênio , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA