Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7997): 45-57, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297170

RESUMO

The linear production and consumption of plastics today is unsustainable. It creates large amounts of unnecessary and mismanaged waste, pollution and carbon dioxide emissions, undermining global climate targets and the Sustainable Development Goals. This Perspective provides an integrated technological, economic and legal view on how to deliver a circular carbon and plastics economy that minimizes carbon dioxide emissions. Different pathways that maximize recirculation of carbon (dioxide) between plastics waste and feedstocks are outlined, including mechanical, chemical and biological recycling, and those involving the use of biomass and carbon dioxide. Four future scenarios are described, only one of which achieves sufficient greenhouse gas savings in line with global climate targets. Such a bold system change requires 50% reduction in future plastic demand, complete phase-out of fossil-derived plastics, 95% recycling rates of retrievable plastics and use of renewable energy. It is hard to overstate the challenge of achieving this goal. We therefore present a roadmap outlining the scale and timing of the economic and legal interventions that could possibly support this. Assessing the service lifespan and recoverability of plastic products, along with considerations of sufficiency and smart design, can moreover provide design principles to guide future manufacturing, use and disposal of plastics.


Assuntos
Poluição Ambiental , Objetivos , Plásticos , Reciclagem , Desenvolvimento Sustentável , Biomassa , Dióxido de Carbono/análise , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Poluição Ambiental/economia , Poluição Ambiental/legislação & jurisprudência , Poluição Ambiental/prevenção & controle , Poluição Ambiental/estatística & dados numéricos , Combustíveis Fósseis , Aquecimento Global/prevenção & controle , Gases de Efeito Estufa/análise , Plásticos/síntese química , Plásticos/economia , Plásticos/metabolismo , Plásticos/provisão & distribuição , Reciclagem/economia , Reciclagem/legislação & jurisprudência , Reciclagem/métodos , Reciclagem/tendências , Energia Renovável , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/legislação & jurisprudência , Desenvolvimento Sustentável/tendências , Tecnologia/economia , Tecnologia/legislação & jurisprudência , Tecnologia/métodos , Tecnologia/tendências
2.
Nature ; 617(7961): 564-573, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996872

RESUMO

Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.


Assuntos
Infecções por Adenovirus Humanos , Genômica , Hepatite , Criança , Humanos , Doença Aguda/epidemiologia , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/virologia , Linfócitos B/imunologia , Perfilação da Expressão Gênica , Hepatite/epidemiologia , Hepatite/imunologia , Hepatite/virologia , Imuno-Histoquímica , Fígado/imunologia , Fígado/virologia , Proteômica , Linfócitos T/imunologia
3.
Nature ; 575(7781): 87-97, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695213

RESUMO

The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.


Assuntos
Dióxido de Carbono/economia , Dióxido de Carbono/isolamento & purificação , Sequestro de Carbono , Tecnologia/economia , Tecnologia/tendências , Dióxido de Carbono/metabolismo , Carvão Vegetal/metabolismo , Florestas , Microalgas/metabolismo , Fotossíntese , Solo/química
4.
J Infect Dis ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181168

RESUMO

BACKGROUND: Human cytomegalovirus is the most common and serious opportunistic infection after solid organ and haematopoietic stem cell transplantation. In this study, we used whole-genome cytomegalovirus data to investigate viral factors associated with the clinical outcome. METHODS: We sequenced cytomegalovirus samples from 16 immunocompromised paediatric patients with persistent viraemia. 8/16 patients died of complications due to cytomegalovirus infection. We also sequenced samples from 35 infected solid organ adult recipients of whom one died with cytomegalovirus infection. RESULTS: We showed that samples from both groups have fixed variants at resistance sites and mixed infections. NGS sequencing also revealed non-fixed variants at resistance sites in most of the patients who died (6/9). A machine learning approach identified 10 genes with non-fixed variants in these patients. These genes formed a viral signature which discriminated patients with cytomegalovirus infection who died from those that survived with high accuracy (AUC=0.96). Lymphocyte numbers for a subset of patients showed no recovery post-transplant in the patients who died. CONCLUSIONS: We hypothesise that the viral signature identified in this study may be a useful biomarker for poor response to antiviral drug treatment and indirectly for poor T cell function, potentially identifying early, those patients requiring non-pharmacological interventions.

5.
J Am Chem Soc ; 146(15): 10451-10464, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589774

RESUMO

While outstanding catalysts are known for the ring-opening copolymerization (ROCOP) of CO2 and propene oxide (PO), few are reported at low CO2 pressure. Here, a new series of Co(III)M(I) heterodinuclear catalysts are compared. The Co(III)K(I) complex shows the best activity (TOF = 1728 h-1) and selectivity (>90% polymer, >99% CO2) and is highly effective at low pressures (<10 bar). CO2 insertion is a prerate determining chemical equilibrium step. At low pressures, the concentration of the active catalyst depends on CO2 pressure; above 12 bar, its concentration is saturated, and rates are independent of pressure, allowing the equilibrium constant to be quantified for the first time (Keq = 1.27 M-1). A unified rate law, applicable under all operating conditions, is presented. As proof of potential, published data for leading literature catalysts are reinterpreted and the CO2 equilibrium constants estimated, showing that this unified rate law applies to other systems.

6.
J Am Chem Soc ; 146(12): 8381-8393, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484170

RESUMO

Using carbon dioxide (CO2) to make recyclable thermoplastics could reduce greenhouse gas emissions associated with polymer manufacturing. CO2/cyclic epoxide ring-opening copolymerization (ROCOP) allows for >30 wt % of the polycarbonate to derive from CO2; so far, the field has largely focused on oligocarbonates. In contrast, efficient catalysts for high molar mass polycarbonates are underinvestigated, and the resulting thermoplastic structure-property relationships, processing, and recycling need to be elucidated. This work describes a new organometallic Mg(II)Co(II) catalyst that combines high productivity, low loading tolerance, and the highest polymerization control to yield polycarbonates with number average molecular weight (Mn) values from 4 to 130 kg mol-1, with narrow, monomodal distributions. It is used in the ROCOP of CO2 with bicyclic epoxides to produce a series of samples, each with Mn > 100 kg mol-1, of poly(cyclohexene carbonate) (PCHC), poly(vinyl-cyclohexene carbonate) (PvCHC), poly(ethyl-cyclohexene carbonate) (PeCHC, by hydrogenation of PvCHC), and poly(cyclopentene carbonate) (PCPC). All these materials are amorphous thermoplastics, with high glass transition temperatures (85 < Tg < 126 °C, by differential scanning calorimetry) and high thermal stability (Td > 260 °C). The cyclic ring substituents mediate the materials' chain entanglements, viscosity, and glass transition temperatures. Specifically, PCPC was found to have 10× lower entanglement molecular weight (Me)n and 100× lower zero-shear viscosity compared to those of PCHC, showing potential as a future thermoplastic. All these high molecular weight polymers are fully recyclable, either by reprocessing or by using the Mg(II)Co(II) catalyst for highly selective depolymerizations to epoxides and CO2. PCPC shows the fastest depolymerization rates, achieving an activity of 2500 h-1 and >99% selectivity for cyclopentene oxide and CO2.

7.
J Am Chem Soc ; 146(6): 3816-3824, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301241

RESUMO

The ligand chemistry of colloidal semiconductor nanocrystals mediates their solubility, band gap, and surface facets. Here, selective organometallic chemistry is used to prepare small, colloidal cuprous oxide nanocrystals and to control their surface chemistry by decorating them with metal complexes. The strategy is demonstrated using small (3-6 nm) cuprous oxide (Cu2O) colloidal nanocrystals (NC), soluble in organic solvents. Organometallic complexes are coordinated by reacting the surface Cu-OH bonds with organometallic reagents, M(C6F5)2, M = Zn(II) and Co(II), at room temperature. These reactions do not disrupt the Cu2O crystallinity or nanoparticle size; rather, they allow for the selective coordination of a specific metal complex at the surface. Subsequently, the surface-coordinated organometallic complex is reacted with three different carboxylic acids to deliver Cu-O-Zn(O2CR') complexes. Selective nanocrystal surface functionalization is established using spectroscopy (IR, 19F NMR), thermal gravimetric analyses (TGA), transmission electron microscopy (TEM, EELS), and X-ray photoelectron spectroscopy (XPS). Photoluminescence efficiency increases dramatically upon organometallic surface functionalization relative to that of the parent Cu2O NC, with the effect being most pronounced for Zn(II) decoration. The nanocrystal surfaces are selectively functionalized by both organic ligands and well-defined organometallic complexes; this synthetic strategy may be applicable to many other metal oxides, hydroxides, and semiconductors. In the future, it should allow NC properties to be designed for applications including catalysis, sensing, electronics, and quantum technologies.

8.
Langmuir ; 40(13): 6685-6693, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38525517

RESUMO

Understanding the mechanism of interfacial enzyme kinetics is critical to the development of synthetic biological systems for the production of value-added chemicals. Here, the interfacial kinetics of the catalysis of ß-nicotinamide adenine dinucleotide (NAD+)-dependent enzymes acting on NAD+ tethered to the surface of silica nanoparticles (SiNPs) has been investigated using two complementary and supporting kinetic approaches: enzyme excess and reactant (NAD+) excess. Kinetic models developed for these two approaches characterize several critical reaction steps including reversible enzyme adsorption, complexation, decomplexation, and catalysis of the surface-bound enzyme/NAD+ complex. The analysis reveals a concentrating effect resulting in a very high local concentration of enzyme and cofactor on the particle surface, in which the enzyme is saturated by surface-bound NAD, facilitating a rate enhancement of enzyme/NAD+ complexation and catalysis. This resulted in high enzyme efficiency within the tethered NAD+ system compared to that of the free enzyme/NAD+ system, which increases with decreasing enzyme concentration. The role of enzyme adsorption onto solid substrates with a tethered catalyst (such as NAD+) has potential for creating highly efficient flow biocatalytic systems.


Assuntos
NAD , NAD/química , Biocatálise , Catálise , Cinética , Adsorção
9.
Angew Chem Int Ed Engl ; : e202408246, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819775

RESUMO

Improving composite cathode function is key to the success of the solid-state battery. Maximizing attainable cathode capacity and retention requires integrating suitable polymeric binders that retain a sufficiently high ionic conductivity and long-term chemo-mechanical stability of the cathode active material-solid-electrolyte-carbon mixture. Herein, we report block copolymer networks composed of lithium borate polycarbonates and poly(ethylene oxide) that improved the capacity (200 mA h g-1 at 1.75 mA cm-2) and capacity retention (94% over 300 cycles) of all-solid-state composite cathodes with nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode active material, Li6PS5Cl solid electrolyte, and carbon. Tetrahedral B(OR)2(OH)2- anions immobilized on the polycarbonate segments provide hydrogen-bonding chain crosslinking and selective Li-counterion conductivity, parameterized by Li-ion transference numbers close to unity (tLi+ ~ 0.94). With 90 wt% polycarbonate content and a flexible low glass transition temperature backbone, the single-ion conductors achieved high Li-ion conductivities of 0.2 mS cm-1 at 30°C. The work should inform future binder design for improving the processability of cathode composites towards commercialising solid-state batteries, and allow use in other cell configurations, such as lithium-sulphur cathode designs.

10.
Angew Chem Int Ed Engl ; : e202407794, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896057

RESUMO

Vat photopolymerization 3D printing has proven very successful for the rapid additive manufacturing (AM) of polymeric parts at high resolution. However, the range of materials that can be printed and their resulting properties remains narrow. Herein, we report the successful AM of a series of poly(carbonate-b-ester-b-carbonate) elastomers, derived from carbon dioxide and bio-derived ϵ-decalactone. By employing a highly active and selective Co(II)Mg(II) polymerization catalyst, an ABA triblock copolymer (Mn=6.3 kg mol-1, ÐM=1.26) was synthesized, formulated into resins which were 3D printed using digital light processing (DLP) and a thiol-ene-based crosslinking system. A series of elastomeric and degradable thermosets were produced, with varying thiol cross-linker length and poly(ethylene glycol) content, to produce complex triply periodic geometries at high resolution. Thermomechanical characterization of the materials reveals printing-induced microphase separation and tunable hydrophilicity. These findings highlight how utilizing DLP can produce sustainable materials from low molar mass polyols quickly and at high resolution. The 3D printing of these functional materials may help to expedite the production of sustainable plastics and elastomers with potential to replace conventional petrochemical-based options.

11.
J Am Chem Soc ; 145(36): 19840-19848, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37654014

RESUMO

Poly(l-lactic acid) (PLLA) is a leading commercial polymer produced from biomass, showing useful properties for plastics and fiber applications; after use, it is compostable. One area for improvement is postconsumer waste PLLA chemical recycling to monomer (CRM), i.e., the formation of l-lactide (l-LA) from waste plastic. This process is currently feasible at high reaction temperatures and shows low catalytic activity accompanied, in some cases, by side reactions, including epimerization. Here, a commercial Sn(II) catalyst, applied with nonvolatile commercial alcohol, enables highly efficient CRM of PLLA to yield l-LA in excellent yield and purity (92% yield, >99% l-LA from theoretical max.). The depolymerization is performed using neat polymer films at low temperatures (160 °C) under a nitrogen flow or vacuum. The chemical recycling operates with outstanding activity, achieving turnover frequencies which are up to 3000× higher than previously excellent catalysts and applied at loadings up to 6000× lower than previously leading catalysts. The catalyst system achieves a TOF = 3000 h-1 at 0.01 mol % or 1:10,000 catalyst:PLLA loading. The depolymerization of waste PLLA plastic packaging (coffee cup lids) produces pure l-LA in excellent yield and selectivity. The new catalyst system (Sn + alcohol) can itself be recycled four times in different PLLA "batch degradations" and maintains its high catalytic productivity, activity, and selectivity.

12.
J Am Chem Soc ; 145(25): 13888-13900, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311063

RESUMO

Boron-functionalized polymers are used in opto-electronics, biology, and medicine. Methods to produce boron-functionalized and degradable polyesters remain exceedingly rare but relevant where (bio)dissipation is required, for example, in self-assembled nanostructures, dynamic polymer networks, and bio-imaging. Here, a boronic ester-phthalic anhydride and various epoxides (cyclohexene oxide, vinyl-cyclohexene oxide, propene oxide, allyl glycidyl ether) undergo controlled ring-opening copolymerization (ROCOP), catalyzed by organometallic complexes [Zn(II)Mg(II) or Al(III)K(I)] or a phosphazene organobase. The polymerizations are well controlled allowing for the modulation of the polyester structures (e.g., by epoxide selection, AB, or ABA blocks), molar masses (9.4 < Mn < 40 kg/mol), and uptake of boron functionalities (esters, acids, "ates", boroxines, and fluorescent groups) in the polymer. The boronic ester-functionalized polymers are amorphous, with high glass transition temperatures (81 < Tg < 224 °C) and good thermal stability (285 < Td < 322 °C). The boronic ester-polyesters are deprotected to yield boronic acid- and borate-polyesters; the ionic polymers are water soluble and degradable under alkaline conditions. Using a hydrophilic macro-initiator in alternating epoxide/anhydride ROCOP, and lactone ring opening polymerization, produces amphiphilic AB and ABC copolyesters. Alternatively, the boron-functionalities are subjected to Pd(II)-catalyzed cross-couplings to install fluorescent groups (BODIPY). The utility of this new monomer as a platform to construct specialized polyesters materials is exemplified here in the synthesis of fluorescent spherical nanoparticles that self-assemble in water (Dh = 40 nm). The selective copolymerization, variable structural composition, and adjustable boron loading represent a versatile technology for future explorations of degradable, well-defined, and functional polymers.

13.
Development ; 147(24)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361092

RESUMO

Using the zebrafish neural tube as a model, we uncover the in vivo mechanisms allowing the generation of two opposing apical epithelial surfaces within the centre of an initially unpolarised, solid organ. We show that Mpp5a and Rab11a play a dual role in coordinating the generation of ipsilateral junctional belts whilst simultaneously releasing contralateral adhesions across the centre of the tissue. We show that Mpp5a- and Rab11a-mediated resolution of cell-cell adhesions are both necessary for midline lumen opening and contribute to later maintenance of epithelial organisation. We propose that these roles for both Mpp5a and Rab11a operate through the transmembrane protein Crumbs. In light of a recent conflicting publication, we also clarify that the junction-remodelling role of Mpp5a is not specific to dividing cells.


Assuntos
Guanilato Ciclase/genética , Morfogênese/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas rab de Ligação ao GTP/genética , Animais , Polaridade Celular/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Junções Intercelulares/genética , Proteínas de Membrana , Tubo Neural/crescimento & desenvolvimento , Peixe-Zebra/genética
14.
Acc Chem Res ; 55(15): 1997-2010, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35863044

RESUMO

The development of sustainable plastic materials is an essential target of chemistry in the 21st century. Key objectives toward this goal include utilizing sustainable monomers and the development of polymers that can be chemically recycled/degraded. Polycarbonates synthesized from the ring-opening copolymerization (ROCOP) of epoxides and CO2, and polyesters synthesized from the ROCOP of epoxides and anhydrides, meet these criteria. Despite this, designing efficient catalysts for these processes remains challenging. Typical issues include the requirement for high catalyst loading; low catalytic activities in comparison with other commercialized polymerizations; and the requirement of costly, toxic cocatalysts. The development of efficient catalysts for both types of ROCOP is highly desirable. This Account details our work on the development of catalysts for these two related polymerizations and, in particular, focuses on dinuclear complexes, which are typically applied without any cocatalyst. We have developed mechanistic hypotheses in tandem with our catalysts, and throughout the Account, we describe the kinetic, computational, and structure-activity studies that underpin the performance of these catalysts. Our initial research on homodinuclear M(II)M(II) complexes for cyclohexene oxide (CHO)/CO2 ROCOP provided data to support a chain shuttling catalytic mechanism, which implied different roles for the two metals in the catalysis. This mechanistic hypothesis inspired the development of mixed-metal, heterodinuclear catalysts. The first of this class of catalysts was a heterodinuclear Zn(II)Mg(II) complex, which showed higher rates than either of the homodinuclear [Zn(II)Zn(II) and Mg(II)Mg(II)] analogues for CHO/CO2 ROCOP. Expanding on this finding, we subsequently developed a Co(II)Mg(II) complex that showed field leading rates for CHO/CO2 ROCOP and allowed for unique insight into the role of the two metals in this complex, where it was established that the Mg(II) center reduced transition state entropy and the Co(II) center reduced transition state enthalpy. Following these discoveries, we subsequently developed a range of heterodinuclear M(III)M(I) catalysts that were capable of catalyzing a broad range of copolymerizations, including the ring-opening copolymerization of CHO/CO2, propylene oxide (PO)/CO2, and CHO/phthalic anhydride (PA). Catalysts featuring Co(III)K(I) and Al(III)K(I) were found to be exceptionally effective for PO/CO2 and CHO/PA ROCOP, respectively. Such M(III)M(I) complexes operate through a dinuclear metalate mechanism, where the M(III) binds and activates monomers while the M(I) species binds the polymer change in close proximity to allow for insertion into the activated monomer. Our research illustrates how careful catalyst design can yield highly efficient systems and how the development of mechanistic understanding aids this process. Avenues of future research are also discussed, including the applicability of these heterodinuclear catalysts in the synthesis of sustainable materials.


Assuntos
Anidridos , Dióxido de Carbono , Dióxido de Carbono/química , Catálise , Compostos de Epóxi/química , Metais/química , Polimerização , Polímeros/química
15.
Chemistry ; 29(33): e202300608, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36929530

RESUMO

A series of dynamic metalloporphyrin [2]rotaxane molecular shuttles comprising of bis-functionalised Zn(II) porphyrin axle and pyridyl functionalised macrocycle components are prepared in high yield via active metal template synthetic methodology. Extensive variable temperature 1 H NMR and quantitative UV-Vis spectroscopic titration studies demonstrate dynamic macrocycle translocation is governed by an inter-component co-ordination interaction between the macrocycle pyridyl and axle Zn(II) metalloporphyrin, which serves to bias a 'resting state' co-conformation. The dynamic shuttling behaviour of the interlocked structures is dramatically inhibited by the addition of a neutral Lewis base such as pyridine, but can also be tuned via post-synthetic rotaxane demetallation of the porphyrin axle core to give free-base, or upon subsequent metallation, Ni(II) [2]rotaxane analogues. Importantly, the Lewis acidic Zn(II) porphyrin axle component is also capable of coordinating anions which induces mechanical bond shuttling behaviour resulting in a novel optical sensing response.


Assuntos
Metaloporfirinas , Porfirinas , Rotaxanos , Modelos Moleculares , Rotaxanos/química , Bases de Lewis , Ânions/química
16.
Chemistry ; 29(35): e202300228, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37078972

RESUMO

This work applies organometallic routes to copper(0/I) nanoparticles and describes how to match ligand chemistries with different material compositions. The syntheses involve reacting an organo-copper precursor, mesitylcopper(I) [CuMes]z (z=4, 5), at low temperatures and in organic solvents, with hydrogen, air or hydrogen sulfide to deliver Cu, Cu2 O or Cu2 S nanoparticles. Use of sub-stoichiometric quantities of protonated ligand (pro-ligand; 0.1-0.2 equivalents vs. [CuMes]z ) allows saturation of surface coordination sites but avoids excess pro-ligand contaminating the nanoparticle solutions. The pro-ligands are nonanoic acid (HO2 CR1 ), 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (HO2 CR2 ) or di(thio)nonanoic acid, (HS2 CR1 ), and are matched to the metallic, oxide or sulfide nanoparticles. Ligand exchange reactions reveal that copper(0) nanoparticles may be coordinated by carboxylate or di(thio)carboxylate ligands, but Cu2 O is preferentially coordinated by carboxylate ligands and Cu2 S by di(thio)carboxylate ligands. This work highlights the opportunities for organometallic routes to well-defined nanoparticles and the need for appropriate ligand selection.


Assuntos
Cobre , Nanopartículas , Ligantes , Sulfetos
17.
Mol Pharm ; 20(6): 3073-3087, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37218930

RESUMO

Covalent conjugation of a biologically stable polymer to a therapeutic protein, e.g., an antibody, holds many benefits such as prolonged plasma exposure of the protein and improved tumor uptake. Generation of defined conjugates is advantageous in many applications, and a range of site-selective conjugation methods have been reported. Many current coupling methods lead to dispersity in coupling efficiencies with subsequent conjugates of less-well-defined structure, which impacts reproducibility of manufacture and ultimately may impact successful translation to treat or image diseases. We explored designing stable, reactive groups for polymer conjugation reactions that would lead to conjugates through the simplest and most abundant residue on most proteins, the lysine residue, yielding conjugates in high purity and demonstrating retention of mAb efficacy through surface plasmon resonance (SPR), cell targeting, and in vivo tumor targeting. We utilized squaric acid diesters as coupling agents for selective amidation of lysine residues and were able to selectively conjugate one, or two, high-molecular-weight polymers to a therapeutically relevant antibody, 528mAb, that subsequently retained full binding specificity. Water-soluble copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) and N-isopropylacrylamide (NIPAM) were prepared by Reversible Addition-Fragmentation chain-Transfer (RAFT) polymerization and we demonstrated that a dual-dye-labeled antibody-RAFT conjugate (528mAb-RAFT) exhibited effective tumor targeting in model breast cancer xenografts in mice. The combination of the precise and selective squaric acid ester conjugation method, with the use of RAFT polymers, leads to a promising strategic partnership for improved therapeutic protein-polymer conjugates having a very-well-defined structure.


Assuntos
Neoplasias , Polímeros , Humanos , Animais , Camundongos , Polímeros/química , Lisina , Reprodutibilidade dos Testes , Anticorpos , Proteínas/química
18.
J Infect Dis ; 225(6): 994-1004, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33034349

RESUMO

BACKGROUND: To eliminate trachoma as a public health problem, the World Health Organization recommends the SAFE (surgery, antibiotics, facial cleanliness, and environmental improvement) strategy. As part of the SAFE strategy in the Amhara Region, Ethiopia, the Trachoma Control Program distributed >124 million doses of antibiotics between 2007 and 2015. Despite this, trachoma remained hyperendemic in many districts and a considerable level of Chlamydia trachomatis (Ct) infection was evident. METHODS: We utilized residual material from Abbott m2000 Ct diagnostic tests to sequence 99 ocular Ct samples from Amhara and investigated the role of Ct genomic variation in continued transmission of Ct. RESULTS: Sequences were typical of ocular Ct at the whole-genome level and in tissue tropism-associated genes. There was no evidence of macrolide resistance in this population. Polymorphism around the ompA gene was associated with village-level trachomatous inflammation-follicular prevalence. Greater ompA diversity at the district level was associated with increased Ct infection prevalence. CONCLUSIONS: We found no evidence for Ct genomic variation contributing to continued transmission of Ct after treatment, adding to evidence that azithromycin does not drive acquisition of macrolide resistance in Ct. Increased Ct infection in areas with more ompA variants requires longitudinal investigation to understand what impact this may have on treatment success and host immunity.


Assuntos
Gonorreia , Doenças do Recém-Nascido , Tracoma , Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Chlamydia trachomatis/genética , Farmacorresistência Bacteriana/genética , Etiópia/epidemiologia , Genômica , Gonorreia/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Macrolídeos/uso terapêutico , Prevalência , Tracoma/tratamento farmacológico , Tracoma/epidemiologia , Tracoma/prevenção & controle
19.
Angew Chem Int Ed Engl ; 62(37): e202308378, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37409487

RESUMO

Carbon dioxide copolymerization is a front-runner CO2 utilization strategy but its viability depends on improving the catalysis. So far, catalyst structure-performance correlations have not been straightforward, limiting the ability to predict how to improve both catalytic activity and selectivity. Here, a simple measure of a catalyst ground-state parameter, metal reduction potential, directly correlates with both polymerization activity and selectivity. It is applied to compare performances of 6 new heterodinuclear Co(III)K(I) catalysts for propene oxide (PO)/CO2 ring opening copolymerization (ROCOP) producing poly(propene carbonate) (PPC). The best catalyst shows an excellent turnover frequency of 389 h-1 and high PPC selectivity of >99 % (50 °C, 20 bar, 0.025 mol% catalyst). As demonstration of its utility, neither DFT calculations nor ligand Hammett parameter analyses are viable predictors. It is proposed that the cobalt redox potential informs upon the active site electron density with a more electron rich cobalt centre showing better performances. The method may be widely applicable and is recommended to guide future catalyst discovery for other (co)polymerizations and carbon dioxide utilizations.

20.
Clin Infect Dis ; 75(2): 305-313, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34410361

RESUMO

BACKGROUND: Post-vaccination infections challenge the control of the coronavirus disease 2019 (COVID-19) pandemic. METHODS: We matched 119 cases of post-vaccination severe acute respiratory syndrome coronavirus 2 infection with BNT162b2 mRNA or ChAdOx1 nCOV-19 to 476 unvaccinated patients with COVID-19 (September 2020-March 2021) according to age and sex. Differences in 60-day all-cause mortality, hospital admission, and hospital length of stay were evaluated. Phylogenetic, single-nucleotide polymorphism (SNP), and minority variant allele (MVA) full-genome sequencing analysis was performed. RESULTS: Overall, 116 of 119 cases developed COVID-19 post-first vaccination dose (median, 14 days). Thirteen of 119 (10.9%) cases and 158 of 476 (33.2%) controls died (P < .001), corresponding to the 4.5 number needed to treat (NNT). Multivariably, vaccination was associated with a 69.3% (95% confidence interval [CI]: 45.8 to 82.6) relative risk (RR) reduction in mortality. Similar results were seen in subgroup analysis for patients with infection onset ≥14 days after first vaccination and across vaccine subgroups. Hospital admissions (odds ratio, 0.80; 95% CI: .51 to 1.28) and length of stay (-1.89 days; 95% CI: -4.57 to 0.78) were lower for cases, while cycle threshold values were higher (30.8 vs 28.8, P = .053). B.1.1.7 was the predominant lineage in cases (100 of 108, 92.6%) and controls (341 of 446, 76.5%). Genomic analysis identified 1 post-vaccination case that harbored the E484K vaccine-escape mutation (B.1.525 lineage). CONCLUSIONS: Previous vaccination reduces mortality when B.1.1.7 is the predominant lineage. No significant lineage-specific genomic changes during phylogenetic, SNP, and MVA analysis were detected.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina BNT162 , Estudos de Casos e Controles , ChAdOx1 nCoV-19 , Genômica , Humanos , Filogenia , SARS-CoV-2/genética , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA