Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 39(3): 472-484, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30478032

RESUMO

Stress contributes to numerous psychiatric disorders. Corticotropin releasing factor (CRF) signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and ß-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, using Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the coexpression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENT Stress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent coexpression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between norepinephrine and CRF, and point to an action by which guanfacine may reduce negative affective responses.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Hormônio Liberador da Corticotropina/fisiologia , Neurônios/fisiologia , Núcleos Parabraquiais/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Guanfacina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia , Ovariectomia , Técnicas de Patch-Clamp , Proteína Quinase C-delta/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Restrição Física , Estresse Psicológico/fisiopatologia
2.
Brain Behav Immun ; 89: 513-517, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763310

RESUMO

Stress is a major risk factor for the development and exacerbation of mood and anxiety disorders, and recent studies have suggested inflammatory contributions to the pathogenesis of depression. Interestingly, pharmacological inhibition of cyclooxygenase-2 (COX-2) has shown promise in the treatment of affective disorders in small scale clinical studies; however, the mechanisms by which COX-2 inhibition affects behavioral domains relevant to affective disorders are not well understood. Here, we examined the effects of pharmacological inhibition of COX-2 with the highly selective inhibitor Lumiracoxib (LMX) on anxiety-like behavior and in vivo basolateral amygdala (BLA) neural activity in response to acute restraint stress exposure. In male mice, pretreatment with LMX prevented the increase in BLA calcium transients induced by restraint stress and prevented anxiogenic behavior seen after restraint stress exposure. Specifically, acute injection of LMX 5 mg kg-1 reduced anxiety-like behavior in the light-dark box (LD) and elevated-zero maze (EZM). In addition, in vivo fiber photometry studies showed that acute stress increased calcium transients and the predicted action potential frequency of BLA neurons, which was also normalized by acute LMX pretreatment. These findings indicate pharmacological inhibition of COX-2 can prevent acute stress-induced increase in BLA cellular activity and anxiety-like behavior and provides insights into the neural mechanisms by which COX-2 inhibition could affect anxiety domain symptoms in patients with affective disorders.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Estresse Psicológico , Tonsila do Cerebelo , Animais , Ansiedade , Ciclo-Oxigenase 2 , Humanos , Masculino , Camundongos , Estresse Psicológico/complicações
3.
Neuropsychopharmacology ; 48(7): 1031-1041, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36941364

RESUMO

The bed nucleus of the stria terminalis (BNST) is a critical mediator of stress responses and anxiety-like behaviors. Neurons expressing protein kinase C delta (BNSTPKCδ) are an abundant but understudied subpopulation implicated in inhibiting feeding, but which have conflicting reports about their role in anxiety-like behaviors. We have previously shown that expression of PKCδ is dynamically regulated by stress and that BNSTPKCδ cells are recruited during bouts of active stress coping. Here, we first show that in vivo activation of this population is mildly aversive. This aversion was insensitive to prior restraint stress exposure. Further investigation revealed that unlike other BNST subpopulations, BNSTPKCδ cells do not exhibit increased cfos expression following restraint stress. Ex vivo current clamp recordings also indicate they are resistant to firing. To elucidate their afferent control, we next used rabies tracing with whole-brain imaging and channelrhodopsin-assisted circuit mapping, finding that BNSTPKCδ cells receive abundant input from affective, arousal, and sensory regions including the basolateral amygdala (BLA) paraventricular thalamus (PVT) and central amygdala PKCδ-expressing cells (CeAPKCδ). Given these findings, we used in vivo optogenetics and fiber photometry to further examine BNSTPKCδ cells in the context of stress and anxiety-like behavior. We found that BNSTPKCδ cell activity is associated with increased anxiety-like behavior in the elevated plus maze, increases following footshock, and unlike other BNST subpopulations, does not desensitize to repeated stress exposure. Taken together, we propose a model in which BNSTPKCδ cells may serve as threat detectors, integrating exteroceptive and interoceptive information to inform stress coping behaviors.


Assuntos
Núcleo Central da Amígdala , Núcleos Septais , Núcleos Septais/metabolismo , Ansiedade , Núcleo Central da Amígdala/metabolismo , Neurônios/fisiologia , Afeto
4.
Neuron ; 110(6): 1068-1083.e5, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35045338

RESUMO

Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.


Assuntos
Interneurônios , Somatostatina , Animais , Interneurônios/fisiologia , Potenciação de Longa Duração , Camundongos , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Somatostatina/metabolismo , Sinapses/fisiologia
5.
Nat Commun ; 12(1): 3561, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117229

RESUMO

Active responses to stressors involve motor planning, execution, and feedback. Here we identify an insular cortex to BNST (insula→BNST) circuit recruited during restraint stress-induced active struggling that modulates affective behavior. We demonstrate that activity in this circuit tightly follows struggling behavioral events and that the size of the fluorescent sensor transient reports the duration of the struggle event, an effect that fades with repeated exposure to the homotypic stressor. Struggle events are associated with enhanced glutamatergic- and decreased GABAergic signaling in the insular cortex, indicating the involvement of a larger circuit. We delineate the afferent network for this pathway, identifying substantial input from motor- and premotor cortex, somatosensory cortex, and the amygdala. To begin to dissect these incoming signals, we examine the motor cortex input, and show that the cells projecting from motor regions to insular cortex are engaged shortly before struggle event onset. This study thus demonstrates a role for the insula→BNST pathway in monitoring struggling activity and regulating affective behavior.


Assuntos
Aprendizagem da Esquiva , Comportamento Animal , Córtex Cerebral/fisiologia , Tonsila do Cerebelo , Animais , Encéfalo , Córtex Cerebral/diagnóstico por imagem , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios , Córtex Somatossensorial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA