Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Oncol ; 12: 855032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35515134

RESUMO

Introduction: Breast cancer affects two million patients worldwide every year and is the most common cause of cancer-related death among women. The triple-negative breast cancer (TNBC) sub-type is associated with an especially poor prognosis because currently available therapies fail to induce long-lasting responses. Therefore, there is an urgent need to develop novel therapies that result in durable responses. One universal characteristic of the tumor microenvironment is a markedly elevated concentration of extracellular adenosine triphosphate (eATP). Chemotherapy exposure results in further increases in eATP through its release into the extracellular space of cancer cells via P2RX channels. eATP is degraded by eATPases. Given that eATP is toxic to cancer cells, we hypothesized that augmenting the release of eATP through P2RX channels and inhibiting extracellular ATPases would sensitize TNBC cells to chemotherapy. Methods: TNBC cell lines MDA-MB 231, Hs 578t and MDA-MB 468 and non-tumorigenic immortal mammary epithelial MCF-10A cells were treated with increasing concentrations the chemotherapeutic agent paclitaxel in the presence of eATPases or specific antagonists of P2RXs with cell viability and eATP content being measured. Additionally, the mRNA, protein and cell surface expressions of the purinergic receptors P2RX4 and P2RX7 were evaluated in all examined cell lines via qRT-PCR, western blot, and flow cytometry analyses, respectively. Results: In the present study, we observed dose-dependent declines of cell viability and increases in eATP of paclitaxel-treated TNBC cell lines in the presence of inhibitors of eATPases, but not of the MCF-10A cell line. These effects were reversed by specific antagonists of P2RXs. Similar results, as those observed with eATPase inhibitors, were seen with P2RX activators. All examined cell lines expressed both P2RX4 and P2RX7 at the mRNA, protein and cell surface levels. Conclusion: These results reveal that eATP modulates the chemotherapeutic response in TNBC cell lines, which could be exploited to enhance the efficacy of chemotherapy regimens for TNBC.

2.
Front Oncol ; 12: 857590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574319

RESUMO

Background: Among women, breast cancer is the leading cause of cancer-related death worldwide. Estrogen receptor α-positive (ERα+) breast cancer accounts for 70% of all breast cancer subtypes. Although ERα+ breast cancer initially responds to estrogen deprivation or blockade, the emergence of resistance compels the use of more aggressive therapies. While ERα is a driver in ERα+ breast cancer, ERß plays an inhibitory role in several different cancer types. To date, the lack of highly selective ERß agonists without ERα activity has limited the exploration of ERß activation as a strategy for ERα+ breast cancer. Methods: We measured the expression levels of ESR1 and ESR2 genes in immortalized mammary epithelial cells and different breast cancer cell lines. The viability of ERα+ breast cancer cell lines upon treatments with specific ERß agonists, including OSU-ERb-12 and LY500307, was assessed. The specificity of the ERß agonists, OSU-ERb-12 and LY500307, was confirmed by reporter assays. The effects of ERß agonists on cell proliferation, cell cycle, apoptosis, colony formation, cell migration, and expression of tumor suppressor proteins were analyzed. The expression of ESR2 and genes containing ERE-AP1 composite response elements was examined in ERα+ human breast cancer samples to determine the correlation between ESR2 expression and overall survival and that of putative ESR2-regulated genes. Results: In this study, we demonstrate the efficacy of highly selective ERß agonists in ERα+ breast cancer cell lines and drug-resistant derivatives. ERß agonists blocked cell proliferation, migration, and colony formation and induced apoptosis and S and/or G2/M cell-cycle arrest of ERα+ breast cancer cell lines. Also, increases in the expression of the key tumor suppressors FOXO1 and FOXO3a were noted. Importantly, the strong synergy between ERß agonists and ERα antagonists suggested that the efficacy of ERß agonists is maximized by combination with ERα blockade. Lastly, ESR2 (ERß gene) expression was negatively correlated with ESR1 (ERα gene) and CCND1 RNA expression in human metastatic ERα+/HER2- breast cancer samples. Conclusion: Our results demonstrate that highly selective ERß agonists attenuate the viability of ERα+ breast cancer cell lines in vitro and suggest that this therapeutic strategy merits further evaluation for ERα+ breast cancer.

3.
Front Oncol ; 10: 587386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194742

RESUMO

Estrogen receptor alpha (ERα) and estrogen receptor beta (ERß) belong to a superfamily of nuclear receptors called steroid hormone receptors, which, upon binding ligand, dimerize and translocate to the nucleus where they activate or repress the transcription of a large number of genes, thus modulating critical physiologic processes. ERß has multiple isoforms that show differing association with prognosis. Expression levels of the full length ERß1 isoform are often lower in aggressive cancers as compared to normal tissue. High ERß1 expression is associated with improved overall survival in women with breast cancer. The promise of ERß activation, as a potential targeted therapy, is based on concurrent activation of multiple tumor suppressor pathways with few side effects compared to chemotherapy. Thus, ERß is a nuclear receptor with broad-spectrum tumor suppressor activity, which could serve as a potential treatment target in a variety of human cancers including breast cancer. Further development of highly selective agonists that lack ERα agonist activity, will be necessary to fully harness the potential of ERß.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA