Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Ther ; 32(5): 1407-1424, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429927

RESUMO

Maintaining functional adipose innervation is critical for metabolic health. We found that subcutaneous white adipose tissue (scWAT) undergoes peripheral neuropathy (PN) with obesity, diabetes, and aging (reduced small-fiber innervation and nerve/synaptic/growth-cone/vesicle markers, altered nerve activity). Unlike with nerve injuries, peripheral nerves do not regenerate with PN, and therefore new therapies are needed for treatment of this condition affecting 20-30 million Americans. Here, we validated a gene therapy approach using an adipocyte-tropic adeno-associated virus (AAV; serotype Rec2) to deliver neurotrophic factors (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) directly to scWAT to improve tissue-specific PN as a proof-of-concept approach. AAVRec2-BDNF intra-adipose delivery improved tissue innervation in obese/diabetic mice with PN, but after longer periods of dietary obesity there was reduced efficacy, revealing a key time window for therapies. AAVRec2-NGF also increased scWAT innervation in obese mice and was more effective than BDNF, likely because Rec2 targeted adipocytes, the tissue's endogenous NGF source. AAVRec2-NGF also worked well even after 25 weeks of dietary obesity, unlike BDNF, which likely needs a vector that targets its physiological cellular source (stromal vascular fraction cells). Given the differing effects of AAVs carrying NGF versus BDNF, a combined therapy may be ideal for PN.


Assuntos
Adipócitos , Fator Neurotrófico Derivado do Encéfalo , Dependovirus , Terapia Genética , Vetores Genéticos , Obesidade , Gordura Subcutânea , Animais , Dependovirus/genética , Obesidade/terapia , Obesidade/metabolismo , Camundongos , Terapia Genética/métodos , Adipócitos/metabolismo , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Gordura Subcutânea/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/genética , Técnicas de Transferência de Genes , Humanos , Masculino , Doenças do Sistema Nervoso Periférico/terapia , Doenças do Sistema Nervoso Periférico/etiologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Transdução Genética
2.
Neurobiol Aging ; 136: 58-69, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325031

RESUMO

We assessed aging hallmarks in skin, muscle, and adipose in the genetically diverse HET3 mouse, and generated a broad dataset comparing these to individual animal diagnostic SNPs from the 4 founding inbred strains of the HET3 line. For middle- and old-aged HET3 mice, we provided running wheel exercise to ensure our observations were not purely representative of sedentary animals, but age-related phenotypes were not improved with running wheel activity. Adipose tissue fibrosis, peripheral neuropathy, and loss of neuromuscular junction integrity were consistent phenotypes in older-aged HET3 mice regardless of physical activity, but aspects of these phenotypes were moderated by the SNP% contributions of the founding strains for the HET3 line. Taken together, the genetic contribution of founder strain SNPs moderated age-related phenotypes in skin and muscle innervation and were dependent on biological sex and chronological age. However, there was not a single founder strain (BALB/cJ, C57BL/6J, C3H/HeJ, DBA/2J) that appeared to drive more protection or disease-risk across aging in this mouse line, but genetic diversity in general was more protective.


Assuntos
Camundongos Endogâmicos DBA , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos C3H , Fenótipo , Especificidade da Espécie , Camundongos Endogâmicos
3.
Compr Physiol ; 13(3): 4985-5021, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358505

RESUMO

The sympathetic nervous system (SNS) is a crucial arm of the peripheral nervous system (PNS) and includes catecholaminergic neurons that release norepinephrine (NE) onto numerous effector tissues and organs in the body. SNS innervation of both white (WAT) and brown adipose tissue (BAT) is clearly essential for proper tissue function and metabolic control, as decades of surgical, chemical, and genetic denervation studies have demonstrated. Despite our vast knowledge about adipose sympathetic innervation, especially in the context of cold-stimulated browning and thermogenesis that are under SNS control, newer data now provide a nuanced view of the SNS supply to adipose, including its regulation by local neuroimmune cells and neurotrophic factors, the co-release of modulatory neuropeptides along with NE, the importance of local SNS drive to adipose versus systemic increases in circulating catecholamines, and the long-overlooked interplay between adipose sympathetic and sensory nerves. This article brings a modern view to the regulation of sympathetic innervation patterns in WAT and BAT, how to image and quantify the nerve supply, contributions of adipose SNS to tissue functions, and how adipose tissue nerves respond to tissue remodeling and plasticity with changing energy demands. © 2023 American Physiological Society. Compr Physiol 13:4985-5021, 2023.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Humanos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Norepinefrina/metabolismo , Termogênese , Obesidade/metabolismo , Sistema Nervoso Simpático/fisiologia
4.
iScience ; 26(3): 106189, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36895649

RESUMO

Peripheral neuropathy, which can include axonal degeneration and/or demyelination, impacts adipose tissues with obesity, diabetes, and aging. However, the presence of demyelinating neuropathy had not yet been explored in adipose. Both demyelinating neuropathies and axonopathies implicate Schwann cells (SCs), a glial support cell that myelinates axons and contributes to nerve regeneration after injury. We performed a comprehensive assessment of SCs and myelination patterns of subcutaneous white adipose tissue (scWAT) nerves, and changes across altered energy balance states. We found that mouse scWAT contains both myelinated and unmyelinated nerves and is populated by SCs, including SCs that were associated with synaptic vesicle-containing nerve terminals. BTBR ob/ob mice, a model of diabetic peripheral neuropathy, exhibited small fiber demyelinating neuropathy and alterations in SC marker gene expression in adipose that were similar to obese human adipose. These data indicate that adipose SCs regulate the plasticity of tissue nerves and become dysregulated in diabetes.

5.
Aging Cell ; 22(4): e13784, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36798047

RESUMO

Neural communication between the brain and adipose tissues regulates energy expenditure and metabolism through modulation of adipose tissue functions. We have recently demonstrated that under pathophysiological conditions (obesity, diabetes, and aging), total subcutaneous white adipose tissue (scWAT) innervation is decreased ('adipose neuropathy'). With advanced age in the C57BL/6J mouse, small fiber peripheral nerve endings in adipose tissue die back, resulting in reduced contact with adipose-resident blood vessels and other cells. This vascular neuropathy and parenchymal neuropathy together likely pose a physiological challenge for tissue function. In the current work, we used the genetically diverse HET3 mouse model to investigate the incidence of peripheral neuropathy and adipose tissue dysregulation across several ages in both male and female mice. We also investigated the anti-aging treatment rapamycin, an mTOR inhibitor, as a means to prevent or reduce adipose neuropathy. We found that HET3 mice displayed a reduced neuropathy phenotype compared to inbred C56BL/6 J mice, indicating genetic contributions to this aging phenotype. Compared to female HET3 mice, male HET3 mice had worse neuropathic phenotypes by 62 weeks of age. Female HET3 mice appeared to have increased protection from neuropathy until advanced age (126 weeks), after reproductive senescence. We found that rapamycin overall had little impact on neuropathy measures, and actually worsened adipose tissue inflammation and fibrosis. Despite its success as a longevity treatment in mice, higher doses and longer delivery paradigms for rapamycin may lead to a disconnect between life span and beneficial health outcomes.


Assuntos
Doenças do Sistema Nervoso Periférico , Sirolimo , Masculino , Feminino , Animais , Camundongos , Sirolimo/farmacologia , Longevidade/genética , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/genética
6.
STAR Protoc ; 3(1): 101109, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106499

RESUMO

Here we provide a clearing-free protocol for processing intact, whole mount subcutaneous white adipose tissue (scWAT) for immunofluorescence as an alternative to current clearing-based approaches. We use a combination of Z-depth reduction and autofluorescence quenching techniques to fluorescently label, image, and quantify adipose tissue innervation effectively throughout intact mouse tissues without the need for optical clearing or light sheet microscopy. This protocol has been optimized and validated for adipose neurovascular labeling. For complete details on the use and execution of this protocol, please refer to Willows et al. (2021).


Assuntos
Tecido Adiposo , Imageamento Tridimensional , Tecido Adiposo/diagnóstico por imagem , Animais , Imunofluorescência , Imageamento Tridimensional/métodos , Camundongos , Microscopia , Coloração e Rotulagem
7.
J Vis Exp ; (183)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35661692

RESUMO

A telomerase reverse transcriptase (Tert) lineage-tracing mouse line was developed to investigate the behavior and fate of adult tissue stem cells, by crossing the 'Tet-On' system oTet-Cre mouse with a novel reverse tetracycline transactivator (rtTA) transgene linked to the Tert promoter, which we have demonstrated marks a novel population of adult brain stem cells. Here, administration of the tetracycline derivative doxycycline to mTert-rtTA::oTet-Cre mice will indelibly mark a population of cells that express a 4.4 kb fragment of the promoter region of the gene Tert. When combined the Rosa-mTmG reporter, mTert-rtTA::oTet-Cre::Rosa-mTmG mice will express membrane tdTomato (mTomato) until doxycycline treatment induces the replacement of mTomato expression with membrane EGFP (mGFP) in cells that also express Tert. Therefore, when these triple-transgenic lineage tracing mice receive doxycycline (the "pulse" period during which TERT expressing cells are marked), these cells will become indelibly marked mGFP+ cells, which can be tracked for any desirable amount of time after doxycycline removal (the "chase" period), even if Tert expression is subsequently lost. Brains are then perfusion-fixed and processed for immunofluorescence and other downstream applications in order to interpret changes to stem cell activation, proliferation, lineage commitment, migration to various brain niches, and differentiation to mature cell types. Using this system, any rtTA mouse can be mated to oTet-Cre and a Rosa reporter to conduct doxycycline-inducible "pulse-chase" lineage tracing experiments using markers of stem cells.


Assuntos
Doxiciclina , Transativadores , Animais , Encéfalo/metabolismo , Encéfalo/cirurgia , Doxiciclina/farmacologia , Camundongos , Camundongos Transgênicos , Células-Tronco/metabolismo , Tetraciclina/farmacologia , Transativadores/metabolismo
8.
Front Endocrinol (Lausanne) ; 13: 864925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795142

RESUMO

Peripheral nerves allow a bidirectional communication between brain and adipose tissues, and many studies have clearly demonstrated that a loss of the adipose nerve supply results in tissue dysfunction and metabolic dysregulation. Neuroimmune cells closely associate with nerves in many tissues, including subcutaneous white adipose tissue (scWAT). However, in scWAT, their functions beyond degrading norepinephrine in an obese state remain largely unexplored. We previously reported that a myeloid-lineage knockout (KO) of brain-derived neurotrophic factor (BDNF) resulted in decreased innervation of scWAT, accompanied by an inability to brown scWAT after cold stimulation, and increased adiposity after a high-fat diet. These data underscored that adipose tissue neuroimmune cells support the peripheral nerve supply to adipose and impact the tissue's metabolic functions. We also reported that a subset of myeloid-lineage monocyte/macrophages (Ly6c+CCR2+Cx3cr1+) is recruited to scWAT in response to cold, a process known to increase neurite density in adipose and promote metabolically healthy processes. These cold-induced neuroimmune cells (CINCs) also expressed BDNF. Here we performed RNAseq on CINCs from cold-exposed and room temperature-housed mice, which revealed a striking and coordinated differential expression of numerous genes involved in neuronal function, including neurotrophin signaling and axonal guidance, further supporting that CINCs fulfill a nerve-supporting role in adipose. The increased expression of leukocyte transendothelial migration genes in cold-stimulated CINCs also confirms prior evidence that they are recruited to scWAT and are not tissue resident. We now provide whole-depot imaging of scWAT from LysM-BDNF KO mice, revealing a striking reduction of innervation across the depot fitting with their reduced energy expenditure phenotype. By contrast, Cx3cr1-BDNF KO mice (a macrophage subset of LysM+ cells) exhibited increased thermogenesis and energy expenditure, with compensatory increased food intake and no change in adiposity or body weight. While these KO mice also exhibit a significantly reduced innervation of scWAT, especially around the subiliac lymph node, they displayed an increase in small fiber sympathetic neurite branching, which may underlie their increased thermogenesis. We propose a homeostatic role of scWAT myeloid-lineage neuroimmune cells together in nerve maintenance and neuro-adipose regulation of energy expenditure.


Assuntos
Tecido Adiposo Branco , Fator Neurotrófico Derivado do Encéfalo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Obesidade/metabolismo , Termogênese/genética
9.
iScience ; 24(10): 103127, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622172

RESUMO

Little is known about the diversity and function of adipose tissue nerves, due in part to the inability to effectively visualize the tissue's diverse nerve subtypes and the patterns of innervation across an intact depot. The tools to image and quantify adipose tissue innervation are currently limited. Here, we present a method of tissue processing that decreases tissue thickness in the z-axis while leaving cells intact for subsequent immunostaining. This was combined with autofluorescence quenching techniques to permit intact whole tissues to be mounted on slides and imaged by confocal microscopy, with a complementary means to perform whole tissue neurite density quantification after capture of tiled z-stack images. Additionally, we demonstrate how to visualize nerve terminals (the neuro-adipose nexus) in intact blocks of adipose tissue without z-depth reduction. We have included examples of data demonstrating nerve subtypes, neurovascular interactions, label-free imaging of collagen, and nerve bundle digital cross-sections.

10.
Biology (Basel) ; 8(1)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759876

RESUMO

Brown and white adipose tissues are essential for maintenance of proper energy balance and metabolic health. In order to function efficiently, these tissues require both endocrine and neural communication with the brain. Brown adipose tissue (BAT), as well as the inducible brown adipocytes that appear in white adipose tissue (WAT) after simulation, are thermogenic and energy expending. This uncoupling protein 1 (UCP1)-mediated process requires input from sympathetic nerves releasing norepinephrine. In addition to sympathetic noradrenergic signaling, adipose tissue contains sensory nerves that may be important for relaying fuel status to the brain. Chemical and surgical denervation studies of both WAT and BAT have clearly demonstrated the role of peripheral nerves in browning, thermogenesis, lipolysis, and adipogenesis. However, much is still unknown about which subtypes of nerves are present in BAT versus WAT, what nerve products are released from adipose nerves and how they act to mediate metabolic homeostasis, as well as which cell types in adipose are receiving synaptic input. Recent advances in whole-depot imaging and quantification of adipose nerve fibers, as well as other new research findings, have reinvigorated this field of research. This review summarizes the history of research into adipose innervation and brain⁻adipose communication, and also covers landmark and recent research on this topic to outline what we currently know and do not know about adipose tissue nerve supply and communication with the brain.

11.
PLoS One ; 14(9): e0221766, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509546

RESUMO

The difficulty in obtaining as well as maintaining weight loss, together with the impairment of metabolic control in conditions like diabetes and cardiovascular disease, may represent pathological situations of inadequate neural communication between the brain and peripheral organs and tissues. Innervation of adipose tissues by peripheral nerves provides a means of communication between the master metabolic regulator in the brain (chiefly the hypothalamus), and energy-expending and energy-storing cells in the body (primarily adipocytes). Although chemical and surgical denervation studies have clearly demonstrated how crucial adipose tissue neural innervation is for maintaining proper metabolic health, we have uncovered that adipose tissue becomes neuropathic (ie: reduction in neurites) in various conditions of metabolic dysregulation. Here, utilizing both human and mouse adipose tissues, we present evidence of adipose tissue neuropathy, or loss of proper innervation, under pathophysiological conditions such as obesity, diabetes, and aging, all of which are concomitant with insult to the adipose organ as well as metabolic dysfunction. Neuropathy is indicated by loss of nerve fiber protein expression, reduction in synaptic markers, and lower neurotrophic factor expression in adipose tissue. Aging-related adipose neuropathy particularly results in loss of innervation around the tissue vasculature, which cannot be reversed by exercise. Together with indications of neuropathy in muscle and bone, these findings underscore that peripheral neuropathy is not restricted to classic tissues like the skin of distal extremities, and that loss of innervation to adipose may trigger or exacerbate metabolic diseases. In addition, we have demonstrated stimulation of adipose tissue neural plasticity with cold exposure, which may ameliorate adipose neuropathy and be a potential therapeutic option to re-innervate adipose and restore metabolic health.


Assuntos
Tecido Adiposo Branco/inervação , Envelhecimento/metabolismo , Diabetes Mellitus/metabolismo , Obesidade/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Gordura Subcutânea/inervação , Tecido Adiposo Branco/metabolismo , Animais , Índice de Massa Corporal , Temperatura Baixa , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Masculino , Camundongos , Fatores de Crescimento Neural/metabolismo , Plasticidade Neuronal , Obesidade/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA