Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurochem ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372586

RESUMO

Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in AppNL-G-F mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aß) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aß plaques in AppNL-G-F mice. Immunohistology-based co-localization identified associations between focal pro-inflammatory lipids, glial activation, and autophagic flux disruption. Likewise, in human donors with varying Braak stages, similar studies of cortical sections revealed co-expression of lysophospholipids and ceramides around Aß plaques in AD (Braak stage V/VI) but not in earlier Braak stage controls. Our findings in mice provide evidence of temporally and spatially heterogeneous differences in lipid composition as local and global Aß-related pathologies evolve. Observing similar lipidomic changes associated with pathological Aß plaques in human AD tissue provides a foundation for understanding differences in CSF lipids with reported clinical stage or disease severity.

2.
Acta Neuropathol ; 147(1): 78, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695952

RESUMO

Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater ß-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for ß-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased ß-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.


Assuntos
Doença de Alzheimer , Senescência Celular , Transcriptoma , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Senescência Celular/fisiologia , Senescência Celular/genética , Idoso , Masculino , Idoso de 80 Anos ou mais , Feminino , Microglia/patologia , Microglia/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neuroglia/patologia , Neuroglia/metabolismo
3.
Brain ; 144(10): 2964-2970, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33892504

RESUMO

In vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-ß peptides in disease pathogenesis; however, less is known about the behaviour of these mutations in vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-ß (Aß)42:38, Aß42:40 and Aß38:40 ratios between presenilin 1 (PSEN1) and amyloid precursor protein (APP) carriers. We examined the relationship between plasma and in vitro models of amyloid-ß processing and tested for associations with parental age at onset. Thirty-nine participants were mutation carriers (28 PSEN1 and 11 APP). Age- and sex-adjusted models showed marked differences in plasma amyloid-ß between genotypes: higher Aß42:38 in PSEN1 versus APP (P < 0.001) and non-carriers (P < 0.001); higher Aß38:40 in APP versus PSEN1 (P < 0.001) and non-carriers (P < 0.001); while Aß42:40 was higher in both mutation groups compared to non-carriers (both P < 0.001). Amyloid-ß profiles were reasonably consistent in plasma and cell lines. Within the PSEN1 group, models demonstrated associations between Aß42:38, Aß42:40 and Aß38:40 ratios and parental age at onset. In vivo differences in amyloid-ß processing between PSEN1 and APP carriers provide insights into disease pathophysiology, which can inform therapy development.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/genética , Presenilina-1/sangue , Presenilina-1/genética , Adulto , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Estudos de Coortes , Estudos Transversais , Feminino , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
4.
Mol Psychiatry ; 25(11): 2919-2931, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30980041

RESUMO

Familial Alzheimer's disease (fAD) mutations alter amyloid precursor protein (APP) cleavage by γ-secretase, increasing the proportion of longer amyloidogenic amyloid-ß (Aß) peptides. Using five control induced pluripotent stem cell (iPSC) lines and seven iPSC lines generated from fAD patients, we investigated the effects of mutations on the Aß secretome in human neurons generated in 2D and 3D. We also analysed matched CSF, post-mortem brain tissue, and iPSCs from the same participant with the APP V717I mutation. All fAD mutation lines demonstrated an increased Aß42:40 ratio relative to controls, yet displayed varied signatures for Aß43, Aß38, and short Aß fragments. We propose four qualitatively distinct mechanisms behind raised Aß42:40. (1) APP V717I mutations alter γ-secretase cleavage site preference. Whereas, distinct presenilin 1 (PSEN1) mutations lead to either (2) reduced γ-secretase activity, (3) altered protein stability or (4) reduced PSEN1 maturation, all culminating in reduced γ-secretase carboxypeptidase-like activity. These data support Aß mechanistic tenets in a human physiological model and substantiate iPSC-neurons for modelling fAD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Mutação , Neurônios/metabolismo , Neurônios/patologia , Adulto , Idoso , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Adulto Jovem
5.
Nat Commun ; 15(1): 2243, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472200

RESUMO

Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased ß-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Perfilação da Expressão Gênica
6.
Brain Commun ; 5(1): fcac321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687397

RESUMO

Mutations in the presenilin 1 gene, PSEN1, which cause familial Alzheimer's disease alter the processing of amyloid precursor protein, leading to the generation of various amyloid-ß peptide species. These species differ in their potential for aggregation. Mutation-specific amyloid-ß peptide profiles may thereby influence pathogenicity and clinical heterogeneity. There is particular interest in comparing mutations with typical and atypical clinical presentations, such as E280G. We generated PSEN1 E280G mutation induced pluripotent stem cells from two patients and differentiated them into cortical neurons, along with previously reported PSEN1 M146I, PSEN1 R278I and two control lines. We assessed both the amyloid-ß peptide profiles and presenilin 1 protein maturity. We also compared amyloid-ß peptide profiles in human post-mortem brain tissue from cases with matched mutations. Amyloid-ß ratios significantly differed compared with controls and between different patients, implicating mutation-specific alterations in amyloid-ß ratios. Amyloid-ß42:40 was increased in the M146I and both E280G lines compared with controls. Amyloid-ß42:40 was not increased in the R278I line compared with controls. The amyloid-ß43:40 ratio was increased in R278I and both E280G lines compared with controls, but not in M146I cells. Distinct amyloid-ß peptide patterns were also observed in human brain tissue from individuals with these mutations, showing some similar patterns to cell line observations. Reduced presenilin 1 maturation was observed in neurons with the PSEN1 R278I and E280G mutations, but not the M146I mutation. These results suggest that mutation location can differentially alter the presenilin 1 protein and affect its autoendoproteolysis and processivity, contributing to the pathological phenotype. Investigating differences in underlying molecular mechanisms of familial Alzheimer's disease may inform our understanding of clinical heterogeneity.

7.
Brain Pathol ; 32(3): e13009, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34319632

RESUMO

Familial Alzheimer's disease (FAD) is caused by autosomal dominant mutations in the PSEN1, PSEN2 or APP genes, giving rise to considerable clinical and pathological heterogeneity in FAD. Here we investigate variability in clinical data and the type and distribution of Aß pathologies throughout the cortical layers of different FAD mutation cases. Brain tissue from 20 FAD cases [PSEN1 pre-codon 200 (n = 10), PSEN1 post-codon 200 (n = 6), APP (n = 4)] were investigated. Frontal cortex sections were stained immunohistochemically for Aß, and Nissl to define the cortical layers. The frequency of different amyloid-beta plaque types was graded for each cortical layer and the severity of cerebral amyloid angiopathy (CAA) was determined in cortical and leptomeningeal blood vessels. Comparisons were made between FAD mutations and APOE4 status, with associations between pathology, clinical and genetic data investigated. In this cohort, possession of an APOE4 allele was associated with increased disease duration but not with age at onset, after adjusting for mutation sub-group and sex. We found Aß pathology to be heterogeneous between cases although Aß load was highest in cortical layer 3 for all mutation groups and a higher Aß load was associated with APOE4. The PSEN1 post-codon 200 group had a higher Aß load in lower cortical layers, with a small number of this group having increased cotton wool plaque pathology in lower layers. Cotton wool plaque frequency was positively associated with the severity of CAA in the whole cohort and in the PSEN1 post-codon 200 group. Carriers of the same PSEN1 mutation can have differing patterns of Aß deposition, potentially because of differences in risk factors. Our results highlight possible influences of APOE4 genotype, and PSEN1 mutation type on Aß deposition, which may have effects on the clinical heterogeneity of FAD.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Apolipoproteína E4/genética , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/patologia , Códon , Mutação , Placa Amiloide/patologia , Presenilina-1/genética
8.
Cell Rep ; 34(2): 108615, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440141

RESUMO

Mutations in presenilin 1 (PSEN1) or presenilin 2 (PSEN2), the catalytic subunit of γ-secretase, cause familial Alzheimer's disease (fAD). We hypothesized that mutations in PSEN1 reduce Notch signaling and alter neurogenesis. Expression data from developmental and adult neurogenesis show relative enrichment of Notch and γ-secretase expression in stem cells, whereas expression of APP and ß-secretase is enriched in neurons. We observe premature neurogenesis in fAD iPSCs harboring PSEN1 mutations using two orthogonal systems: cortical differentiation in 2D and cerebral organoid generation in 3D. This is partly driven by reduced Notch signaling. We extend these studies to adult hippocampal neurogenesis in mutation-confirmed postmortem tissue. fAD cases show mutation-specific effects and a trend toward reduced abundance of newborn neurons, supporting a premature aging phenotype. Altogether, these results support altered neurogenesis as a result of fAD mutations and suggest that neural stem cell biology is affected in aging and disease.


Assuntos
Doença de Alzheimer/genética , Mutação , Células-Tronco Neurais/patologia , Presenilina-1/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Neurais/metabolismo , Neurogênese , Presenilina-1/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo
9.
Brain Behav ; 8(11): e01128, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30329219

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is the world leading cause of dementia. Early detection of AD is essential for faster and more efficacious usage of therapeutics and preventive measures. Even though it is well known that one ε4 allele of apolipoprotein E gene increases the risk for sporadic AD five times, and that two ε4 alleles increase the risk 20 times, reliable genetic markers for AD are not yet available. Previous studies have shown that microtubule-associated protein tau (MAPT) gene polymorphisms could be associated with increased risk for AD. METHODS: The present study included 113 AD patients and 53 patients with mild cognitive impairment (MCI), as well as nine healthy controls (HC) and 53 patients with other primary causes of dementia. The study assessed whether six MAPT haplotype-tagging polymorphisms (rs1467967, rs242557, rs3785883, rs2471738, del-In9, and rs7521) and MAPT haplotypes are associated with AD pathology, as measured by cerebrospinal fluid (CSF) AD biomarkers amyloid ß1-42 (Aß1-42 ), total tau (t-tau), tau phosphorylated at epitopes 181 (p-tau181 ), 199 (p-tau199 ), and 231 (p-tau231 ), and visinin-like protein 1 (VILIP-1). RESULTS: Significant increases in t-tau and p-tau CSF levels were found in patients with AG and AA MAPT rs1467967 genotype, CC MAPT rs2471738 genotype and in patients with H1H2 or H2H2 MAPT haplotype. CONCLUSIONS: These results indicate that MAPT haplotype-tagging polymorphisms and MAPT haplotypes should be further tested as potential genetic biomarkers of AD.


Assuntos
Doença de Alzheimer/genética , Disfunção Cognitiva/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas tau/genética , Adulto , Idoso , Alelos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Diagnóstico Precoce , Feminino , Marcadores Genéticos/genética , Genótipo , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/fisiologia , Proteínas tau/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA