Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dev Biol ; 386(1): 72-85, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24333517

RESUMO

Congenital vertebral malformations (CVM) occur in 1 in 1000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles ((m531, vu41, vu105)) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue.


Assuntos
Colágeno Tipo VIII/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Coluna Vertebral/anormalidades , Peixe-Zebra/embriologia , Alelos , Animais , Colágeno Tipo VIII/genética , Cruzamentos Genéticos , Hibridização In Situ , Meiose , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Notocorda/anormalidades , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Fatores de Tempo , Peixe-Zebra/genética
2.
Dev Cell ; 12(3): 391-402, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17336905

RESUMO

The vertebrate heart arises during gastrulation as cardiac precursors converge from the lateral plate mesoderm territories toward the embryonic midline and extend rostrally to form bilateral heart fields. G protein-coupled receptors (GPCRs) mediate functions of the nervous and immune systems; however, their roles in gastrulation remain largely unexplored. Here, we show that the zebrafish homologs of the Agtrl1b receptor and its ligand, Apelin, implicated in physiology and angiogenesis, control heart field formation. Zebrafish gastrulae express agtrl1b in the lateral plate mesoderm, while apelin expression is confined to the midline. Reduced or excess Agtrl1b or Apelin function caused deficiency of cardiac precursors and, subsequently, the heart. In Apelin-deficient gastrulae, the cardiac precursors converged inefficiently to the heart fields and showed ectopic distribution, whereas cardiac precursors overexpressing Apelin exhibited abnormal morphology and rostral migration. Our results implicate GPCR signaling in movements of discrete cell populations that establish organ rudiments during vertebrate gastrulation.


Assuntos
Quimiocinas/metabolismo , Gástrula/metabolismo , Coração/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mioblastos Cardíacos/metabolismo , Organogênese/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Receptores de Apelina , Padronização Corporal/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Quimiocinas/genética , Desenvolvimento Embrionário/fisiologia , Gástrula/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesoderma/fisiologia , Mioblastos Cardíacos/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Cell Metab ; 4(2): 155-62, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16890543

RESUMO

The critical developmental and genetic requirements of copper metabolism during embryogenesis are unknown. Utilizing a chemical genetic screen in zebrafish, we identified small molecules that perturb copper homeostasis. Our findings reveal a role for copper in notochord formation and demonstrate a hierarchy of copper metabolism within the embryo. To elucidate these observations, we interrogated a genetic screen for embryos phenocopied by copper deficiency, identifying calamity, a mutant defective in the zebrafish ortholog of the Menkes disease gene (atp7a). Copper metabolism in calamity is restored by human ATP7A, and transplantation experiments reveal that atp7a functions cell autonomously, findings with important therapeutic implications. The gene dosage of atp7a determines the sensitivity to copper deprivation, revealing that the observed developmental hierarchy of copper metabolism is informed by specific genetic factors. Our data provide insight into the developmental pathophysiology of copper metabolism and suggest that suboptimal copper metabolism may contribute to birth defects.


Assuntos
Adenosina Trifosfatases/genética , Cobre/metabolismo , Notocorda/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , ATPases Transportadoras de Cobre , Embrião não Mamífero , Dados de Sequência Molecular , Fenótipo , Peixe-Zebra/genética
4.
Sci Rep ; 11(1): 15940, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354169

RESUMO

Previously, genetic lineage tracing based on the mesothelial marker Wt1, appeared to show that peritoneal mesothelial cells have a range of differentiative capacities and are the direct progenitors of vascular smooth muscle in the intestine. However, it was not clear whether this was a temporally limited process or continued throughout postnatal life. Here, using a conditional Wt1-based genetic lineage tracing approach, we demonstrate that the postnatal and adult peritoneum covering intestine, mesentery and body wall only maintained itself and failed to contribute to other visceral tissues. Pulse-chase experiments of up to 6 months revealed that Wt1-expressing cells remained confined to the peritoneum and failed to differentiate into cellular components of blood vessels or other tissues underlying the peritoneum. Our data confirmed that the Wt1-lineage system also labelled submesothelial cells. Ablation of Wt1 in adult mice did not result in changes to the intestinal wall architecture. In the heart, we observed that Wt1-expressing cells maintained the epicardium and contributed to coronary vessels in newborn and adult mice. Our results demonstrate that Wt1-expressing cells in the peritoneum have limited differentiation capacities, and that contribution of Wt1-expressing cells to cardiac vasculature is based on organ-specific mechanisms.


Assuntos
Diferenciação Celular/genética , Proteínas WT1/genética , Animais , Linhagem da Célula/genética , Vasos Coronários/citologia , Células Epiteliais/citologia , Epitélio , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Intestinos/citologia , Masculino , Camundongos , Músculo Liso Vascular/citologia , Pericárdio/citologia , Peritônio , Transcriptoma/genética , Proteínas WT1/metabolismo
5.
Brain Res ; 1595: 1-9, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25451114

RESUMO

Fused-In-Sarcoma (FUS) is a candidate gene for neurological disorders including motor neurone disease and Parkinson׳s disease in addition to various types of cancer. Recently it has been reported that over expression of FUS causes motor neurone disease in mouse models hence mutations leading to changes in gene expression may contribute to the development of neurodegenerative disease. Genome evolutionary conservation was used to predict important cis-acting DNA regulators of the FUS gene promoter that direct transcription. The putative regulators identified were analysed in reporter gene assays in cells and in chick embryos. Our analysis indicated in addition to regulatory domains 5' of the transcriptional start site an important regulatory domain resides in intron 1 of the gene itself. This intronic domain functioned both in cell lines and in vivo in the neural tube of the chick embryo including developing motor neurones. Our data suggest the interaction of multiple domains including intronic domains are involved in expression of FUS. A better understanding of the regulation of expression of FUS may give insight into how its stimulus inducible expression may be associated with neurological disorders.


Assuntos
Proteínas de Fluorescência Verde/genética , Doença dos Neurônios Motores/genética , Proteína FUS de Ligação a RNA/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Modelos Animais de Doenças , Cães , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Mutação , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Proteína FUS de Ligação a RNA/metabolismo
6.
PLoS One ; 9(6): e90833, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24608899

RESUMO

Genetic mutations of FUS have been linked to many diseases including Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration. A primate specific and polymorphic retrotransposon of the SINE-VNTR-Alu (SVA) family is present upstream of the FUS gene. Here we have demonstrated that this retrotransposon can act as a classical transcriptional regulatory domain in the context of a reporter gene construct both in vitro in the human SK-N-AS neuroblastoma cell line and in vivo in a chick embryo model. We have also demonstrated that the SVA is composed of multiple distinct regulatory domains, one of which is a variable number tandem repeat (VNTR). The ability of the SVA and its component parts to direct reporter gene expression supported a hypothesis that this region could direct differential FUS expression in vivo. The SVA may therefore contribute to the modulation of FUS expression exhibited in and associated with neurological disorders including ALS where FUS regulation may be an important parameter in progression of the disease. As VNTRs are often clinical associates for disease progression we determined the extent of polymorphism within the SVA. In total 2 variants of the SVA were identified based within a central VNTR. Preliminary analysis addressed the association of these SVA variants within a small sporadic ALS cohort but did not reach statistical significance, although we did not include other parameters such as SNPs within the SVA or an environmental factor in this analysis. The latter may be particularly important as the transcriptional and epigenetic properties of the SVA are likely to be directed by the environment of the cell.


Assuntos
Esclerose Lateral Amiotrófica/genética , Regiões Promotoras Genéticas , Proteína FUS de Ligação a RNA/genética , Animais , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular Tumoral , Embrião de Galinha , Estudos de Associação Genética , Humanos , Repetições Minissatélites , Elementos Reguladores de Transcrição , Retroelementos , Análise de Sequência de DNA , Transcrição Gênica
7.
Development ; 132(2): 393-404, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15623803

RESUMO

During vertebrate development the dorsal gastrula or Spemann-Mangold organizer orchestrates axis formation largely by limiting the ventralizing and posteriorizing activity of bone morphogenetic proteins (BMPs). In mouse and Xenopus laevis, genes encoding the zinc finger transcriptional repressor Prdm1/Blimp1 (PR domain containing 1, with ZNF domain; previously named B lymphocyte-induced maturation protein 1) were recently shown to be expressed in the visceral endoderm and anterior endomesoderm, respectively, and the prechordal plate of gastrula stage embryos. Later in development Prdm1/Blimp1 is expressed in many other tissues, including pharyngeal arches, limb buds, otic vesicles, photoreceptor cell layer, slow muscle and cloaca. Based on misexpression and dominant-negative studies, Prdm1/Blimp1 was proposed to promote anterior endomesoderm and head development in Xenopus laevis. Here we report the isolation and functional characterization of zebrafish prdm1 exhibiting a dynamic and evolutionarily conserved expression pattern. Misexpression of prdm1 inhibits the formation of dorsoanterior structures and reduces expression of chordin, which encodes a BMP antagonist. Conversely, interference with Prdm1 translation using antisense morpholino oligonucleotides, increases chordin expression, while reducing expression of Bmp genes, and consequently dorsalizing the embryo. At the end of the gastrula period, prdm1 morphant embryos have enlarged animal-vegetal and anteroposterior embryonic axes. This altered embryo morphology is associated with augmented extension movements of dorsal tissues and normal posterior migration of ventral tissues. Additionally, Prdm1 activity is essential for proper development of slow muscle, the photoreceptor cell layer, branchial arches and pectoral fins. Our studies reveal essential roles for prdm1 in limiting the function of the gastrula organizer and regulating cell fate specification and morphogenetic processes in precise correspondence with its intricate expression pattern.


Assuntos
Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula , Movimento Celular , Clonagem Molecular , Proteínas de Ligação a DNA , Endoderma/metabolismo , Etiquetas de Sequências Expressas , Gástrula/metabolismo , Genes Dominantes , Glicoproteínas/metabolismo , Humanos , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares , Fenótipo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Biossíntese de Proteínas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenopus , Peixe-Zebra , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA