Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Vaccine ; 41(44): 6572-6578, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37679279

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious viral disease of livestock which is prevalent across Africa, the Middle East, Asia, and South America where it has a severe economic impact on the agriculture industry. Vaccination with inactivated viral vaccines is used as the main control measure in these endemic regions of the world, however the presence of multiple serotypes, subtypes, and the continual emergence of new, antigenically divergent strains limits its effectiveness. East Africa (EA) has been identified as a region that would particularly benefit from updated FMD vaccines, since those currently in use contain older strains which do not provide good protection against contemporary strains. Four serotypes are currently circulating in EA, necessitating the development of a quadrivalent vaccine containing representative strains of each serotype. A key consideration in the selection of vaccine strains is the stability of the virus particle, since the capsids readily dissociate on exposure to elevated temperatures, but only intact capsids induce protective immunity to FMD. Therefore, with a view to producing a more stable, updated quadrivalent vaccine for EA, we recently screened a panel of foot-and-mouth disease virus (FMDV) isolates from the region to select strains with naturally higher thermostabilities and confirmed their immunogenicity in cattle. Herein we describe the formulation and serological assessment of wild-type and recombinant quadrivalent vaccine candidates comprising these stable strains, and demonstrate that both vaccines generate high neutralising antibody titres against the homologous strains and also to heterologous strains from EA. Importantly, the vaccine passed the criteria set by the AgResults vaccine challenge project and offers good cross-protection against a panel of regional FMDV strains.

2.
Vaccines (Basel) ; 11(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140247

RESUMO

Vaccination is widely used to control foot-and-mouth disease (FMD), but maternal antibodies may interfere with the response to vaccination in calves. This study, conducted on a regularly vaccinated Malaysian dairy farm, aimed to optimise the vaccination regime by measuring the in vitro neutralising virus antibody responses of 51 calves before and after vaccination with a one or two dose vaccination regime starting at 2-7 months old. The presence of maternal antibodies was associated with poor post-vaccination antibody responses after a single dose of vaccine in calves less than 6 months old. However, a second dose of vaccine given three weeks later, improved the antibody responses in all ages of calves. This confirms the view that in regularly vaccinated farms, some combination of delay and revaccination is needed to achieve effective immunization of calves. Sera from cows and pre-vaccinated calves neutralised homologous serotype A vaccine virus more strongly than a heterologous serotype A field virus, but this pattern was reversed in some calves after vaccination. The strength of heterologous responses in calves 49 days after first vaccination correlated to the amount of transferred maternal antibody, suggesting that pre-existing antibodies could have modulated the specificity of these active antibody responses. If confirmed, such an effect by pre-existing antibodies could have wider implications for broadening the coverage of FMD vaccine responses.

3.
Prev Vet Med ; 214: 105889, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906937

RESUMO

Controlling foot-and-mouth disease (FMD) by vaccination requires adequate population coverage and high vaccine efficacy under field conditions. To assure veterinary services that animals have acquired sufficient immunity, strategic post-vaccination surveys can be conducted to monitor the coverage and performance of the vaccine. Correct interpretation of these serological data and an ability to derive exact prevalence estimates of antibody responses requires an awareness of the performance of serological tests. Here, we used Bayesian latent class analysis to evaluate the diagnostic sensitivity and specificity of four tests. A non-structural protein (NSP) ELISA determines vaccine independent antibodies from environmental exposure to FMD virus (FMDV), and three assays measuring total antibodies derived from vaccine antigen or environmental exposure to two serotypes (A, O): the virus neutralisation test (VNT), a solid phase competitive ELISA (SPCE), and a liquid phase blocking ELISA (LPBE). Sera (n = 461) were collected by a strategic post-vaccination monitoring survey in two provinces of Southern Lao People's Democratic Republic (PDR) after a vaccination campaign in early 2017. Not all samples were tested by every assay and each serotype: VNT tested for serotype A and O, whereas SPCE and LPBE tested for serotype O, and only NSP-negative samples were tested by VNT, with 90 of them not tested (missing by study design). These data challenges required informed priors (based on expert opinion) for mitigating possible lack of model identifiability. The vaccination status of each animal, its environmental exposure to FMDV, and the indicator of successful vaccination were treated as latent (unobserved) variables. Posterior median for sensitivity and specificity of all tests were in the range of 92-99 %, except for the sensitivity of NSP (∼66%) and the specificity of LPBE (∼71 %). There was strong evidence that SPCE outperformed LPBE. In addition, the proportion of animals recorded as having been vaccinated that showed a serological immune response was estimated to be in the range of 67-86 %. The Bayesian latent class modelling framework can easily and appropriately impute missing data. It is important to use field study data as diagnostic tests are likely to perform differently on field survey samples compared to samples obtained under controlled conditions.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Febre Aftosa/diagnóstico , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Sorogrupo , Teorema de Bayes , Testes Sorológicos/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Vacinação/veterinária , Anticorpos Antivirais , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle
4.
Vaccines (Basel) ; 11(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38140222

RESUMO

The recent introduction of foot-and-mouth disease (FMD) virus serotype O (O/EA-2 topotype) in Southern Africa has changed the epidemiology of the disease and vaccine requirements of the region. Commercial and subsistence cattle herds in Zambia were vaccinated with an FMD virus serotype O Manisa vaccine according to a double- or single-dose vaccination schedule. Heterologous antibody responses induced by this vaccine against a representative O/EA-2 virus from Zambia were determined. Virus neutralisation tests (VNTs) showed double-dosed cattle had a mean reciprocal log virus neutralisation titre of 2.02 (standard error [SE] = 0.16, n = 9) for commercial herds and 1.65 (SE = 0.17, n = 5) for subsistence herds 56 days after the first vaccination (dpv). Significantly lower mean titres were observed for single-dosed commercial herds (0.90, SE = 0.08, n = 9) and subsistence herds (1.15, SE = 0.18, n = 3) 56 dpv. A comparison of these results and those generated by solid-phase competitive ELISA (SPCE) tests showed a statistically significant positive correlation by Cohen's kappa coefficient. Therefore, SPCE might be used in assessing the immunogenicity of vaccines in place of VNT. Furthermore, for this vaccine and field strain, a vaccination regime employing a two-dose primary course and revaccination after 4-6 months is likely to be appropriate.

5.
Vet World ; 15(2): 524-530, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35400944

RESUMO

Background and Aim: Serological assays are widely used to monitor the performance of foot-and-mouth disease (FMD) vaccines to estimate vaccination coverage and to ensure that vaccinated animals generate adequate immune responses. This study aimed to measure the FMD virus (FMDV)-specific responses in cattle and sheep after a single dose of a trivalent FMD vaccine containing serotypes A, O, and Asia-1, and to use these sera to calibrate virus neutralization tests (VNTs) and serotype-specific serological enzyme-linked immunoassays (ELISAs) that can measure post-vaccination responses. Materials and Methods: Sera were collected from cattle (n=10) and sheep (n=10) on 0, 21, and 56 days after immunization with an imported aqueous formulated FMD vaccine. These samples were tested by VNT using field FMDV isolates that are representative of the epidemiological risks in Central Asia (A/ASIA/Iran-05, A/ASIA/GVII, O/ME-SA/Ind-2001, O/SEA/Mya-98, O/ME-SA/PanAsia, and Asia-1 Shamir). Heterologous VNT antibody responses were compared to those measured using commercial FMDV-specific ELISAs for serotypes O, A, and Asia 1. Results: Administration of the FMD vaccine increased FMDV-specific antibody titers for both species in sera collected on day 21, but these elevated titers were short-lived and were decreased by day 56. Conclusion: These results highlight the short duration of immunity with a single dose of this aqueous vaccine and motivate further studies to assess immune responses in cattle and small ruminants after a two-dose course vaccination schedule. Further comparative data for VNT and serotype-specific ELISAs are needed to define cutoffs that can be used to monitor post-vaccination immune responses in low-containment laboratories where it is not possible to handle live FMDVs.

6.
Front Vet Sci ; 9: 1027006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532344

RESUMO

Serology is widely used to predict whether vaccinated individuals and populations will be protected against infectious diseases, including foot-and-mouth disease (FMD), which affects cloven-hoofed animals. Neutralising antibody titres to FMD challenge viruses correlate to protection against FMD, for vaccinated cattle that are infected with the same strain as in the vaccine (homologous protection). Similar relationships exist for cross-strain protection between different vaccine and challenge viruses, although much less data are available for these heterologous studies. Poor inter-laboratory reproducibility of the virus neutralisation test (VNT) also hampers comparisons between studies. Therefore, day-of-challenge sera (n = 180) were assembled from 13 previous FMD cross-protection experiments for serotypes O (n = 2), A (n = 10), and SAT 2 (n = 1). These were tested by VNT against the challenge viruses at the FMD FAO World Reference Laboratory (WRLFMD) and the titres were compared to challenge outcomes (protected or not). This dataset was combined with equivalent serology and protection data for 61 sera from four cross-protection experiments carried out at WRLFMD for serotypes O (n = 2), A (n = 1), and Asia 1 (n = 1). VNT results and protection outcomes were also analysed for a serotype O cross-protection experiment involving 39 cattle, where the sera were not available for retesting at WRLFMD. Three categories of association between heterologous neutralising antibody titre and heterologous protection were found (Group 1-3). The log10 reciprocal titres associated on average with 75% protection (with 95% credible limits) were: Group 1: 2.46 (2.11-2.97); Group 2: 1.67 (1.49-1.92); Group 3: 1.17 (1.06-1.30). Further cross-protection data are needed to understand the factors that underpin this variability and to develop more robust antibody thresholds. Establishing cut-off serological titres that can be used to score the adequacy of vaccine-induced immunity will facilitate the monitoring and thereby the performance of FMD vaccination in the field.

7.
Viruses ; 14(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35891476

RESUMO

Antibodies to the foot-and-mouth disease virus (FMDV) capsid induced by infection or vaccination can provide serotype-specific protection and be measured using virus neutralization tests and viral structural-protein (SP-)ELISAs. Separate tests are needed for each serotype, but cross-serotype reactions complicate serotyping. In this study, inter-serotypic responses were quantified for five SP-ELISA formats by testing 294 monovalent mainly bovine sera collected following infection, vaccination, or vaccination and infection with one of five serotypes of FMDV. Over half of the samples, representing all three immunization categories, scored positive for at least one heterologous serotype and some scored positive for all serotypes tested. A comparative approach to identifying the strongest reaction amongst serotypes O, A and Asia 1 improved the accuracy of serotyping to 73-100% depending on the serotype and test system, but this method will be undermined where animals have been infected and/or vaccinated with multiple FMDV serotypes. Preliminary studies with stabilized recombinant capsid antigens of serotypes O and A that do not expose internal epitopes showed reduced cross-reactivity, supporting the hypothesis that capsid integrity can affect the serotype-specificity of the SP-ELISAs. The residual cross-reactivity associated with capsid surface epitopes was consistent with the evidence of cross-serotype virus neutralization.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Bovinos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos , Sorogrupo
8.
Front Vet Sci ; 9: 913046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090164

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a priority emerging disease. CCHF, caused by the CCHF virus (CCHFV), can lead to hemorrhagic fever in humans with severe cases often having fatal outcomes. CCHFV is maintained within a tick-vertebrate-tick cycle, which includes domestic animals. Domestic animals infected with CCHFV do not show clinical signs of the disease and the presence of antibodies in the serum can provide evidence of their exposure to the virus. Current serological tests are specific to either one CCHFV antigen or the whole virus antigen. Here, we present the development of two in-house ELISAs for the detection of serum IgG that is specific for two different CCHFV antigens: glycoprotein Gc (CCHFV Gc) and nucleoprotein (CCHFV NP). We demonstrate that these two assays were able to detect anti-CCHFV Gc-specific and anti-CCHFV NP-specific IgG in sheep from endemic CCHFV areas with high specificity, providing new insight into the heterogeneity of the immune response induced by natural infection with CCHFV in domestic animals.

9.
Vaccine ; 39(35): 5015-5024, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34303562

RESUMO

Foot-and-mouth disease (FMD) is a global burden on the livestock industry. The causative agent, FMD virus (FMDV), is highly infectious and exists in seven distinct serotypes. Vaccination remains the most effective control strategy in endemic regions and current FMD vaccines are made from inactivated preparations of whole virus. The inherent instability of FMDV and the emergence of new strains presents challenges to efficacious vaccine development. Currently, vaccines available in East Africa are comprised of relatively historic strains with unreported stabilities. As an initial step to produce an improved multivalent FMD vaccine we have identified naturally stable East African FMDV strains for each of the A, O, SAT1 and SAT2 serotypes and investigated their potential for protecting ruminants against strains that have recently circulated in East Africa. Interestingly, high diversity in stability between and within serotypes was observed, and in comparison to non-African A serotype viruses reported to date, the East African strains tested in this study are less stable. Candidate vaccine strains were adapted to propagation in BHK-21 cells with minimal capsid changes and used to generate vaccinate sera that effectively neutralised a panel of FMDV strains selected to improve FMD vaccines used in East Africa. This work highlights the importance of combining tools to predict and assess FMDV vaccine stability, with cell culture adaptation and serological tests in the development of FMD vaccines.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Proteínas do Capsídeo/genética , Febre Aftosa/prevenção & controle , Sorogrupo
10.
Nat Commun ; 12(1): 542, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483491

RESUMO

There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Peptídeos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Linhagem Celular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Suínos
11.
Vaccine ; 38(7): 1708-1714, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31926753

RESUMO

Foot-and-mouth disease (FMD) is a high impact viral disease of livestock for which vaccines are extensively used in control. Mongolia has regular incursions of FMD virus that are typically limited to the eastern region although large epidemics are occasionally reported in the normally disease-free western areas. Vaccines are imported and form an important component of the control strategy. In 2015, post-vaccination monitoring guidelines were published by the FAO-OIE recommending approaches for assessing the appropriateness of imported vaccines including small-scale immunogenicity studies. This study used these recommended approaches to guide the use of vaccine adjuvant type and the need for a one or two dose primary course in the national control programme considering cattle, sheep and Bactrian camels and also whether these vaccines were appropriate for the FMD virus lineages considered high risk to Mongolia (A/ASIA/Sea-97; O/SEA/Mya-98; O/ME-SA/PanAsia; O/ME-SA/Ind-2001). The results of these immunogenicity studies indicated that in cattle and sheep, oil-adjuvanted vaccines led to higher and more persistent neutralisation titres that were satisfactory against the target lineages if a two-dose primary course was utilised. In contrast, aqueous-adjuvanted vaccines were associated with lower titres that likely required a booster after 3 months. Levels of antibodies in Bactrian camels were significantly lower although it is unknown how these may correlate with protection under experimental or field exposure conditions. The results of this study have implications for vaccine policy in Mongolia and suggest further studies on the role of Bactrian camels in the epidemiology of FMD are necessary to indicate if further research on FMD vaccines are needed in this species.


Assuntos
Febre Aftosa , Imunogenicidade da Vacina , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Camelus , Bovinos , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/imunologia , Mongólia , Ovinos , Vacinação/veterinária
12.
J Virol Methods ; 276: 113786, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31765721

RESUMO

Foot-and-mouth disease virus (FMDV) is a highly variable RNA virus existing as seven different serotypes. The antigenic variability between and within serotypes can limit the cross-reactivity and therefore the in vivo cross-protection of vaccines. Selection of appropriate vaccine strains is crucial in the control of FMD. Determination of indirect relationships (r1-value) between potential vaccine strains and field strains based on antibody responses against both are routinely used for vaccine matching purposes. Aiming at the investigation of the repeatability, reproducibility and comparability of r1-value determination within and between laboratories and serological tests, a small scale vaccine matching ring test for FMDV serotype A was organized. Well-characterized serum pools from cattle vaccinated with a monovalent A24/Cruzeiro/Brazil/55 (A24) FMD vaccine with known in vivo protection status (homologous and heterologous) were distributed to four laboratories to determine r1-values for the heterologous FMD strains A81/Argentina/87, A/Argentina/2000 and A/Argentina/2001 using the virus neutralization tests (VNT) and liquid phase blocking ELISA (LPBE). Within laboratories, the repeatability of r1-value determination was high for both antibody assays. VNT resulted in reproducible and comparable r1-values between laboratories, indicative of a lack of antigenic relatedness between the A24 strain and the heterologous strains tested in this work, thus corresponding to some of the in vivo findings with these strains. Using LPBE, similar trends in r1-values were observed in all laboratories, but the overall reproducibility was lower than with VNT. Inconsistencies between laboratories may at least in part be attributed to differences in LPBE protocols as well as the in preexisting information generated in each laboratory (such as antibody titer-protection correlation curves). To gain more insight in the LPBE-derived r1-values standard bovine control sera were included in the antibody assays performed in each laboratory and a standardization exercise was performed.


Assuntos
Febre Aftosa/imunologia , Testes Sorológicos/normas , Testes Sorológicos/veterinária , Vacinas Virais/imunologia , Animais , Bovinos , Febre Aftosa/prevenção & controle , Testes de Neutralização , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Vacinas Virais/administração & dosagem
13.
NPJ Vaccines ; 5(1): 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793398

RESUMO

Clinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.

14.
Vaccine ; 36(14): 1901-1907, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29506922

RESUMO

In 2015, outbreaks of foot-and-mouth disease (FMD) in the Middle East were discovered to be caused by a viral lineage (A/ASIA/G-VII), which has recently emerged from the Indian sub-continent. In vitro vaccine matching data generated by the World Reference Laboratory (WRLFMD) indicated that A/ASIA/G-VII field viruses were poorly matched with vaccines (A-SAU-95, A22 IRQ and A-IRN-05) that are already used in the region. In order to assess the likely performance of one of these commercially available FMD vaccines, sixteen cattle were vaccinated with a polyvalent vaccine which contained two serotype A components (A-SAU-95 and A-IRN-05) with a homologous potency of at least 6PD50, and two cattle were left unvaccinated as controls. Twenty-one days later, all 18 cattle were challenged by tongue inoculation with an FMDV field isolate A/IRN/22/2015 from the A/ASIA/G-VII lineage, in line with the European Pharmacopeia PPG test conditions. The two control animals developed generalised FMD, and 7/16 vaccinated animals developed at least one foot lesion, thus only 56.3% were defined as protected. For the vaccine components, there was a significant increase in the probability of protection with increasing serological titres for A-SAU-95 (p = 0.03), but not for A-IRN-05 (p = 0.42). Analysis of FMDV in blood and nasal swabs suggested that vaccination reduced shedding and potential onward spread of FMD virus even if the animal developed foot lesions. In summary, the results from this study suggest that whilst this vaccine would not be appropriate for use in an emergency situation (in previously FMD-free countries), it may be partially effective in the field in endemic countries where repeat prophylactic vaccination is practiced. For emergency reactive vaccination, the findings from this study support the idea that a new vaccine strain should be developed that is tailored to the A/ASIA/G-VII lineage.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Bovinos , Reações Cruzadas/imunologia , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/genética , Imunização , Eliminação de Partículas Virais
15.
Vaccine ; 35(49 Pt B): 6850-6857, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29108665

RESUMO

In 2015, foot-and-mouth disease (FMD) viruses of the A/ASIA/G-VII lineage emerged from the Indian sub-continent to cause outbreaks in the Middle and Near East. A factor which has been proposed to have contributed to the rapid spread of this lineage is the poor in vitro vaccine-match of field isolates to vaccine strains that are commonly used in the region. This study used data from outbreaks on four large-scale dairy farms using routine vaccination in Saudi Arabia, to evaluate the impact of vaccination and learn how to manage outbreaks more effectively in this setting. This evaluation also included an assessment of vaccine-induced neutralisation titres to the vaccine and field strains on a related farm with no history of FMD that employed an identical vaccination schedule. The incidence risk among exposed groups ranged from 2.6 to 20.1% and was significantly higher among youngstock (18.7%) compared to adults (7.4%). Evidence was found that local isolation of individual sick animals was more effective than whole group isolation and that subclinical infection and undetected circulation may occur on large-scale farms in Saudi Arabia, although both of these points require further evaluation. On the unaffected farm, the mean reciprocal titres for the vaccine and field strains were all above the cut-off supposed to correlate with clinical protection based on evidence from challenge studies. An estimate of vaccination effectiveness was not possible on the affected farms, but the incidence of FMD provides a more realistic estimation of the expected vaccine performance than in vivo studies or r1 value as it is based on field conditions and natural exposure. This study shows that analysis of field data from FMD outbreaks are a useful addition to more conventional challenge and in vitro based evaluations of vaccines and suggests further work is necessary to validate correlates of protection in field conditions.


Assuntos
Vírus da Febre Aftosa/genética , Febre Aftosa/prevenção & controle , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/prevenção & controle , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Surtos de Doenças/veterinária , Fazendas , Febre Aftosa/epidemiologia , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/isolamento & purificação , Esquemas de Imunização , Incidência , Testes de Neutralização , Arábia Saudita/epidemiologia
16.
Vaccine ; 35(20): 2761-2765, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28396208

RESUMO

Outbreaks of foot-and-mouth disease (FMD) in North Africa (2013) and the Gulf States (2013) of the Middle East have been caused by a FMD viral lineage (O/ME-SA/Ind-2001) that was before 2013 restricted to the Indian Sub-continent. This study was undertaken to assess the in vivo efficacy of a FMD virus emergency vaccine type O1 Manisa against heterologous challenge with a representative field virus (O/ALG/3/2014) from this emerging lineage. This widely available vaccine was selected since in vitro vaccine-matching results gave inconclusive results as to whether or not it would be protective. Three groups of five cattle were vaccinated with O1 Manisa (homologous potency ≥6PD50/dose) using study guidelines outlined in the European Pharmacopeia, and challenged at 21days post-vaccination by tongue inoculation. All animals that were vaccinated with the lowest dose (1/16) of vaccine developed generalised FMD, defined as vesicular lesions at the feet. One animal vaccinated with a 1/4 dose of the vaccine also developed generalised disease, as did two animals vaccinated with the full dose of vaccine. These results indicate that the heterologous potency of this high potency O1 Manisa vaccine was approximately 3.5 PD50/dose. These data support the use of the O1 Manisa vaccine for FMD control in areas where FMDV is endemic e.g. North Africa, and motivate further studies to evaluate other vaccine candidates (or multivalent combinations) that might be potentially used for emergency purposes in FMD-free settings.


Assuntos
Doenças dos Bovinos/prevenção & controle , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Imunidade Heteróloga , Vacinas Virais/imunologia , África do Norte , Animais , Bovinos , Oriente Médio , Resultado do Tratamento , Vacinas Virais/administração & dosagem
17.
J Virol Methods ; 187(2): 406-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23174161

RESUMO

Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release or incomplete inactivation. Non-infectious empty capsids are structural mimics of authentic particles with no associated risk and constitute an alternate vaccine candidate. Capsids self-assemble from the processed virus structural proteins, VP0, VP3 and VP1, which are released from the structural protein precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown to be efficient but linkage of the cognate 3C protease to the C-terminus reduces expression significantly. Inactivation of the 3C enzyme in a P1-2A-3C cassette allows expression and intermediate levels of 3C activity resulted in efficient processing of the P1-2A precursor into the structural proteins which assembled into empty capsids. Expression was independent of the insect host cell background and leads to capsids that are recognised as authentic by a range of anti-FMDV bovine sera suggesting their feasibility as an alternate vaccine.


Assuntos
Biotecnologia/métodos , Capsídeo/imunologia , Cisteína Endopeptidases/biossíntese , Vírus da Febre Aftosa/isolamento & purificação , Expressão Gênica , Tecnologia Farmacêutica/métodos , Proteínas Virais/biossíntese , Vacinas Virais/isolamento & purificação , Proteases Virais 3C , Animais , Linhagem Celular , Cisteína Endopeptidases/genética , Regulação para Baixo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Insetos , Proteínas Virais/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
18.
J Virol Methods ; 183(2): 125-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22561986

RESUMO

The solid-phase competition ELISA (SPCE) has been evaluated in both screening and titration assay formats for detecting antibodies against foot-and-mouth disease virus (FMDV) for the six non-O serotypes A, C, SAT 1, SAT 2, SAT 3 and Asia 1. Cut-off values were determined as a percentage inhibition of 40 for the SAT serotypes and 50 for serotypes A, C and Asia 1, which gave rise to specificity values ranging from 99.41% to 99.9% for the different serotypes. The relative sensitivity between the SPCE and LPBE/virus neutralisation test was 100%/109%. Antiserum titres derived by the SPCE for samples of serotypes O, A(22) and Asia 1 were more than 11, 1 and 5 times of those determined by virus neutralisation test, respectively. This study indicated that the non-type O SPCEs have sufficient sensitivities and specificities for use as serological diagnostic tests for the qualitative and quantitative detection of antibodies against FMDV.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Bovinos/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Anticorpos Antivirais/isolamento & purificação , Ligação Competitiva , Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , Ensaio de Imunoadsorção Enzimática/normas , Febre Aftosa/prevenção & controle , Febre Aftosa/virologia , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos/imunologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/virologia , Suínos/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinação
19.
J Gen Virol ; 86(Pt 10): 2753-2761, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186229

RESUMO

Swine vesicular disease virus (SVDV) is a picornavirus closely related to the human pathogen coxsackievirus B5. In common with other picornaviruses, the 5' untranslated region (5' UTR) of SVDV contains an internal ribosomal entry site (IRES) that plays an important role in cap-independent translation. The aim of this study was to use RT-PCR and sequencing to characterize a fragment of the 5' UTR encompassing the entire IRES. Sequence analysis demonstrated high nucleotide identities within the IRES between 33 representative SVDV isolates. These data support the choice of this region as a diagnostic target and provide information for the improvement of laboratory-based molecular assays to detect SVDV. In contrast to the relative conservation of the IRES element, there was considerable nucleotide variability in the spacer region located between the cryptic AUG at the 3' end of the IRES and the initiation codon of the polyprotein. Interestingly, 11 SVDV isolates had block deletions of between 6 and 125 nt in this region. Nine of these isolates were of recent European origin and were phylogenetically closely related. In vitro growth studies showed that selected isolates with these deletions had a significantly reduced plaque diameter and grew to a significantly lower titre relative to an isolate with a full-length 5' UTR. Further work is required to define the significance of these deletions and to assess whether they impact on the pathogenesis of SVD.


Assuntos
Regiões 5' não Traduzidas/genética , Enterovirus Humano B/genética , Deleção de Genes , Genoma Viral , Ribossomos/metabolismo , Códon de Iniciação/genética , Conformação de Ácido Nucleico , Ribossomos/genética , Análise de Sequência , Deleção de Sequência
20.
Clin Diagn Lab Immunol ; 12(8): 922-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16085909

RESUMO

An inactivated SVDV antigen is used in current enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies to swine vesicular disease virus (SVDV). To develop a noninfectious recombinant alternative, we produced SVDV-like particles (VLPs) morphologically and antigenically resembling authentic SVDV particles by using a dual baculovirus recombinant, which expresses simultaneously the P1 and 3CD protein genes of SVDV under different promoters. Antigenic differences between recombinant VLPs and SVDV particles were not statistically significant in results obtained with a 5B7-ELISA kit, indicating that the VLPs could be used in the place of SVDV antigen in ELISA kits. We developed a blocking ELISA using the VLPs and SVDV-specific neutralizing monoclonal antibody 3H10 (VLP-ELISA) for detection of SVDV serum antibodies in pigs. The VLP-ELISA showed a high specificity of 99.9% when tested with pig sera that are negative for SVDV neutralization (n=1,041). When tested using sera (n=186) collected periodically from pigs (n=19) with experimental infection with each of three different strains of SVDV, the VLP-ELISA detected SVDV serum antibodies as early as 3 days postinfection and continued to detect the antibodies from all infected pigs until termination of the experiments (up to 121 days postinfection). This test performance was similar to that of the gold standard virus neutralization test and indicates that the VLP-ELISA is a highly specific and sensitive method for the detection of SVDV serum antibodies in pigs. This is the first report of the production and diagnostic application of recombinant VLPs of SVDV. Further potential uses of the VLPs are discussed.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/isolamento & purificação , Doença Vesicular Suína/diagnóstico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Baculoviridae/genética , Sequência de Bases , Linhagem Celular , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Insetos/citologia , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Suínos , Doença Vesicular Suína/sangue , Doença Vesicular Suína/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA