Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 43(9): 114669, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178115

RESUMO

Maladaptive plasticity is linked to the chronification of diseases such as pain, but the transition from acute to chronic pain is not well understood mechanistically. Neuroplasticity in the central nucleus of the amygdala (CeA) has emerged as a mechanism for sensory and emotional-affective aspects of injury-induced pain, although evidence comes from studies conducted almost exclusively in acute pain conditions and agnostic to cell type specificity. Here, we report time-dependent changes in genetically distinct and projection-specific CeA neurons in neuropathic pain. Hyperexcitability of CRF projection neurons and synaptic plasticity of parabrachial (PB) input at the acute stage shifted to hyperexcitability without synaptic plasticity in non-CRF neurons at the chronic phase. Accordingly, chemogenetic inhibition of the PB→CeA pathway mitigated pain-related behaviors in acute, but not chronic, neuropathic pain. Cell-type-specific temporal changes in neuroplasticity provide neurobiological evidence for the clinical observation that chronic pain is not simply the prolonged persistence of acute pain.

2.
Neuropsychopharmacology ; 49(3): 508-520, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37542159

RESUMO

The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PBN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. However, the functional significance of this pathway in the modulation of the somatosensory component of pain was recently challenged by studies showing that spinal nociceptive neurons do not target CeA-projecting PBN cells and that manipulations of this pathway have no effect on reflexive-defensive somatosensory responses to peripheral noxious stimulation. Here, we showed that activation of CeA-projecting PBN neurons is critical to increase both stimulus-evoked and spontaneous nociceptive responses following an injury in male and female mice. Using optogenetic-assisted circuit mapping, we confirmed a functional excitatory projection from PBN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increased the expression of the neuronal activity marker Fos in CeA-projecting PBN neurons and that chemogenetic inactivation of these cells decreased behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we showed that chemogenetic activation of CeA-projecting PBN neurons is sufficient to induced bilateral hypersensitivity without injury. Together, our results indicate that the PBN→CeA pathway is a key modulator of pain-related behaviors that can increase reflexive-defensive and affective-motivational responses to somatosensory stimulation in injured states without affecting nociception under normal physiological conditions.


Assuntos
Núcleo Central da Amígdala , Núcleos Parabraquiais , Camundongos , Masculino , Feminino , Animais , Dor , Núcleos Parabraquiais/fisiologia , Neurônios/fisiologia , Transmissão Sináptica
3.
J Inflamm (Lond) ; 21(1): 2, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267952

RESUMO

4R is a tobacco cembranoid that binds to and modulates cholinergic receptors and exhibits neuroprotective and anti-inflammatory activity. Given the established function of the cholinergic system in pain and inflammation, we propose that 4R is also analgesic. Here, we tested the hypothesis that systemic 4R treatment decreases pain-related behaviors and peripheral inflammation via modulation of the alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in a mouse model of inflammatory pain. We elicited inflammation by injecting Complete Freund's Adjuvant (CFA) into the hind paw of male and female mice. We then assessed inflammation-induced hypersensitivity to cold, heat, and tactile stimulation using the Acetone, Hargreaves, and von Frey tests, respectively, before and at different time points (2.5 h - 8d) after a single systemic 4R (or vehicle) administration. We evaluated the contribution of α7 nAChRs 4R-mediated analgesia by pre-treating mice with a selective antagonist of α7 nAChRs followed by 4R (or vehicle) administration prior to behavioral tests. We assessed CFA-induced paw edema and inflammation by measuring paw thickness and quantifying immune cell infiltration in the injected hind paw using hematoxylin and eosin staining. Lastly, we performed immunohistochemical and flow cytometric analyses of paw skin in α7 nAChR-cre::Ai9 mice to measure the expression of α7 nAChRs on immune subsets. Our experiments show that systemic administration of 4R decreases inflammation-induced peripheral hypersensitivity in male and female mice and inflammation-induced paw edema in male but not female mice. Notably, 4R-mediated analgesia and anti-inflammatory effects lasted up to 8d after a single systemic administration on day 1. Pretreatment with an α7 nAChR-selective antagonist prevented 4R-mediated analgesia and anti-inflammatory effects, demonstrating that 4R effects are via modulation of α7 nAChRs. We further show that a subset of immune cells in the hind paw expresses α7 nAChRs. However, the number of α7 nAChR-expressing immune cells is unaltered by CFA or 4R treatment, suggesting that 4R effects are independent of α7 nAChR-expressing immune cells. Together, our findings identify a novel function of the 4R tobacco cembranoid as an analgesic agent in both male and female mice that reduces peripheral inflammation in a sex-dependent manner, further supporting the pharmacological targeting of the cholinergic system for pain treatment.

4.
Pain ; 164(1): 197-215, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559931

RESUMO

ABSTRACT: Previous studies have reported sex differences in patients with irritable bowel syndrome and inflammatory bowel disease, including differences in visceral pain perception. Despite this, sex differences in behavioral manifestations of visceral pain and underlying pathology of the gastrointestinal tract have been largely understudied in preclinical research. In this study, we evaluated potential sex differences in spontaneous nociceptive responses, referred abdominal hypersensitivity, disease progression, and bowel pathology in mouse models of acute and persistent colon inflammation. Our experiments show that females exhibit more nociceptive responses and referred abdominal hypersensitivity than males in the context of acute but not persistent colon inflammation. We further demonstrate that, after acute and persistent colon inflammation, pain-related behavioral responses in females and males are distinct, with increases in licking of the abdomen only observed in females and increases in abdominal contractions only seen in males. During persistent colon inflammation, males exhibit worse disease progression than females, which is manifested as worse physical appearance and higher weight loss. However, no measurable sex differences were observed in persistent inflammation-induced bowel pathology, stool consistency, or fecal blood. Overall, our findings demonstrate sex differences in pain-related behaviors and disease progression in the context of acute and persistent colon inflammation, highlighting the importance of considering sex as a biological variable in future mechanistic studies of visceral pain as well as in the development of diagnostics and therapeutic options for chronic gastrointestinal diseases.


Assuntos
Colite , Síndrome do Intestino Irritável , Dor Visceral , Camundongos , Animais , Feminino , Masculino , Dor Visceral/patologia , Caracteres Sexuais , Colo , Síndrome do Intestino Irritável/complicações , Colite/patologia , Inflamação/patologia , Progressão da Doença , Modelos Animais de Doenças
5.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945586

RESUMO

The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PbN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. At the behavioral level, the PbN→CeA pathway has been proposed to serve as a general alarm system to potential threats that modulates pain-related escape behaviors, threat memory, aversion, and affective-motivational (but not somatosensory) responses to painful stimuli. Increased sensitivity to previously innocuous somatosensory stimulation is a hallmark of chronic pain. Whether the PbN→CeA circuit contributes to heightened peripheral sensitivity following an injury, however, remains unknown. Here, we demonstrate that activation of CeA-projecting PbN neurons contributes to injury-induced behavioral hypersensitivity but not baseline nociception in male and female mice. Using optogenetic assisted circuit mapping, we confirmed a functional excitatory projection from PbN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increases the expression of the neuronal activity marker c-Fos in CeA-projecting PbN neurons and chemogenetic inactivation of these cells reduces behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we show that chemogenetic activation of CeA-projecting PbN neurons is sufficient to induce bilateral hypersensitivity without injury. Together, our results demonstrate that the PbN→CeA pathway is a key modulator of pain-related behaviors that can amplify responses to somatosensory stimulation in pathological states without affecting nociception under normal physiological conditions. Significance Statement: Early studies identified the spino-ponto-amygdaloid pathway as a major ascending circuit conveying nociceptive inputs from the spinal cord to the brain. The functional significance of this circuit to injury-induced hypersensitivity, however, remains unknown. Here, we addressed this gap in knowledge using viral-mediated anatomical tracers, ex-vivo electrophysiology and chemogenetic intersectional approaches in rodent models of persistent pain. We found that activation of this pathway contributes to injury-induced hypersensitivity, directly demonstrating a critical function of the PbN→CeA circuit in pain modulation.

6.
Elife ; 112022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269044

RESUMO

Central amygdala neurons expressing protein kinase C-delta (CeA-PKCδ) are sensitized following nerve injury and promote pain-related responses in mice. The neural circuits underlying modulation of pain-related behaviors by CeA-PKCδ neurons, however, remain unknown. In this study, we identified a neural circuit that originates in CeA-PKCδ neurons and terminates in the ventral region of the zona incerta (ZI), a subthalamic structure previously linked to pain processing. Behavioral experiments show that chemogenetic inhibition of GABAergic ZI neurons induced bilateral hypersensitivity in uninjured mice and contralateral hypersensitivity after nerve injury. In contrast, chemogenetic activation of GABAergic ZI neurons reversed nerve injury-induced hypersensitivity. Optogenetic manipulations of CeA-PKCδ axonal terminals in the ZI further showed that inhibition of this pathway reduces nerve injury-induced hypersensitivity whereas activation of the pathway produces hypersensitivity in the uninjured paws. Altogether, our results identify a novel nociceptive inhibitory efferent pathway from CeA-PKCδ neurons to the ZI that bidirectionally modulates pain-related behaviors in mice.


Assuntos
Núcleo Central da Amígdala , Zona Incerta , Animais , Camundongos , Zona Incerta/fisiologia , Dor , Neurônios GABAérgicos/fisiologia , Optogenética
7.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33188006

RESUMO

Central amygdala (CeA) neurons expressing protein kinase Cδ (PKCδ+) or somatostatin (Som+) differentially modulate diverse behaviors. The underlying features supporting cell-type-specific function in the CeA, however, remain unknown. Using whole-cell patch-clamp electrophysiology in acute mouse brain slices and biocytin-based neuronal reconstructions, we demonstrate that neuronal morphology and relative excitability are two distinguishing features between Som+ and PKCδ+ neurons in the laterocapsular subdivision of the CeA (CeLC). Som+ neurons, for example, are more excitable, compact, and with more complex dendritic arborizations than PKCδ+ neurons. Cell size, intrinsic membrane properties, and anatomic localization were further shown to correlate with cell-type-specific differences in excitability. Lastly, in the context of neuropathic pain, we show a shift in the excitability equilibrium between PKCδ+ and Som+ neurons, suggesting that imbalances in the relative output of these cells underlie maladaptive changes in behaviors. Together, our results identify fundamentally important distinguishing features of PKCδ+ and Som+ cells that support cell-type-specific function in the CeA.


Assuntos
Núcleo Central da Amígdala , Neuralgia , Animais , Núcleo Central da Amígdala/metabolismo , Camundongos , Neurônios/metabolismo , Proteína Quinase C-delta/metabolismo , Somatostatina/metabolismo
8.
Cell Rep ; 29(2): 332-346.e5, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597095

RESUMO

Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.


Assuntos
Núcleo Central da Amígdala/fisiopatologia , Neuralgia/fisiopatologia , Animais , Ativação Enzimática , Feminino , Hipersensibilidade/complicações , Hipersensibilidade/fisiopatologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Tecido Nervoso/lesões , Neuralgia/complicações , Neurônios/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Temperatura , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA