Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2300585120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590414

RESUMO

Interneuron populations within the nucleus accumbens (NAc) orchestrate excitatory-inhibitory balance, undergo experience-dependent plasticity, and gate-motivated behavior, all biobehavioral processes heavily modulated by endogenous cannabinoid (eCB) signaling. While eCBs are well known to regulate synaptic plasticity onto NAc medium spiny neurons and modulate NAc function at the behavioral level, how eCBs regulate NAc interneuron function is less well understood. Here, we show that eCB signaling differentially regulates glutamatergic and feedforward GABAergic transmission onto NAc somatostatin-expressing interneurons (NAcSOM+) in an input-specific manner, while simultaneously increasing postsynaptic excitability of NAcSOM+ neurons, ultimately biasing toward vHPC (ventral hippocampal), and away from BLA (basolateral amygdalalar), activation of NAcSOM+ neurons. We further demonstrate that NAcSOM+ are activated by stress in vivo and undergo stress-dependent plasticity, evident as a global increase in intrinsic excitability and an increase in excitation-inhibition balance specifically at vHPC, but not BLA, inputs onto NAcSOM+ neurons. Importantly, both forms of stress-induced plasticity are dependent on eCB signaling at cannabinoid type 1 receptors. These findings reveal eCB-dependent mechanisms that sculpt afferent input and excitability of NAcSOM+ neurons and demonstrate a key role for eCB signaling in stress-induced plasticity of NAcSOM+-associated circuits.


Assuntos
Canabinoides , Endocanabinoides , Núcleo Accumbens , Neurônios , Somatostatina
2.
J Neurosci ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918065

RESUMO

Metabotropic glutamate receptor 8 (mGlu8) is a heterogeneously expressed and poorly understood glutamate receptor with potential pharmacological significance. The thalamic reticular nucleus (TRN) is a critical inhibitory modulator of the thalamocortical-corticothalamic (TC-CT) network and plays a crucial role in information processing throughout the brain, is implicated in a variety of psychiatric conditions, and is also a site of significant mGlu8 expression. Using both male and female mice, we determined via fluorescent in situ hybridization that parvalbumin-expressing cells in the TRN core and shell matrices (identified by spp1+ and ecel1+ expression, respectively) as well as the cortical layers involved in corticothalamic signaling, express grm8 mRNA. We then assayed the physiological and behavioral impacts of perturbing grm8 signaling in the TC circuit through conditional (AAV-CRE mediated) and cell type-specific constitutive deletion strategies. We show that constitutive parvalbumin grm8 knockout (PV grm8 KO) mice exhibited 1) increased spontaneous excitatory drive onto dorsal thalamus relay cells and 2) impaired sensorimotor gating, measured via paired-pulse inhibition, but observed no differences in locomotion and thigmotaxis in repeated bouts of open field testing. Conversely, we observed hyperlocomotive phenotypes and anxiolytic effects of AAV-mediated conditional knockdown of grm8 in the TRN (TRN grm8 KD) in repeated open field testing. Our findings underscore a role for mGlu8 in regulating excitatory neurotransmission as well as anxiety-related locomotor behavior and sensorimotor gating, revealing potential therapeutic applications for various neuropsychiatric disorders and guiding future research endeavors into mGlu8 signaling and TRN function.Significance statement Group III mGlu receptors and the Thalamic Reticular Nucleus (TRN) are critical modulators of reciprocal cortico-thalamic neurotransmission and are implicated in anxiety and locomotor behaviors. The present study demonstrates a specific enrichment of grm8 mRNA within the TRN and thalamus-projecting cortical layers and characterizes the role of mGlu8 receptors in controlling spontaneous excitatory neurotransmission onto cells located within the dorsal thalamus and regulating sensorimotor behaviors from open field and PPI testing. These findings add to growing bodies of literature regarding both TRN and grm8 regulation of thalamocortical activity and related behaviors implicated in neurological and neuropsychiatric disorders.

3.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050120

RESUMO

The insular cortex (IC) integrates sensory and interoceptive cues to inform downstream circuitry executing adaptive behavioral responses. The IC communicates with areas involved canonically in stress and motivation. IC projections govern stress and ethanol recruitment of bed nucleus of the stria terminalis (BNST) activity necessary for the emergence of negative affective behaviors during alcohol abstinence. Here, we assess the impact of the chronic drinking forced abstinence (CDFA) volitional home cage ethanol intake paradigm on synaptic and excitable properties of IC neurons that project to the BNST (IC→BNST). Using whole-cell patch-clamp electrophysiology, we investigated IC→BNST circuitry 24 h or 2 weeks following forced abstinence (FA) in female C57BL6/J mice. We find that IC→BNST cells are transiently more excitable following acute ethanol withdrawal. In contrast, in vivo ethanol exposure via intraperitoneal injection, ex vivo via ethanol wash, and acute FA from a natural reward (sucrose) all failed to alter excitability. In situ hybridization studies revealed that at 24 h post FA BK channel mRNA expression is reduced in IC. Further, pharmacological inhibition of BK channels mimicked the 24 h FA phenotype, while BK activation was able to decrease AP firing in control and 24 h FA subjects. All together these data suggest a novel mechanism of homeostatic plasticity that occurs in the IC→BNST circuitry following chronic drinking.


Assuntos
Etanol , Núcleos Septais , Humanos , Camundongos , Animais , Feminino , Etanol/farmacologia , Córtex Insular , Núcleos Septais/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Neurônios/fisiologia
4.
Alcohol Alcohol ; 58(3): 298-307, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36847484

RESUMO

AIMS: Maintaining abstinence from alcohol use disorder (AUD) is extremely challenging, partially due to increased symptoms of anxiety and stress that trigger relapse. Rodent models of AUD have identified that the bed nucleus of the stria terminalis (BNST) contributes to symptoms of anxiety-like behavior and drug-seeking during abstinence. In humans, however, the BNST's role in abstinence remains poorly understood. The aims of this study were to assess BNST network intrinsic functional connectivity in individuals during abstinence from AUD compared to healthy controls and examine associations between BNST intrinsic functional connectivity, anxiety and alcohol use severity during abstinence. METHODS: The study included resting state fMRI scans from participants aged 21-40 years: 20 participants with AUD in abstinence and 20 healthy controls. Analyses were restricted to five pre-selected brain regions with known BNST structural connections. Linear mixed models were used to test for group differences, with sex as a fixed factor given previously shown sex differences. RESULTS: BNST-hypothalamus intrinsic connectivity was lower in the abstinent group relative to the control group. There were also pronounced sex differences in both the group and individual analyses; many of the findings were specific to men. Within the abstinent group, anxiety was positively associated with BNST-amygdala and BNST-hypothalamus connectivity, and men, not women, showed a negative relationship between alcohol use severity and BNST-hypothalamus connectivity. CONCLUSIONS: Understanding differences in connectivity during abstinence may help explain the clinically observed anxiety and depression symptoms during abstinence and may inform the development of individualized treatments.


Assuntos
Alcoolismo , Núcleos Septais , Humanos , Masculino , Feminino , Alcoolismo/diagnóstico por imagem , Núcleos Septais/diagnóstico por imagem , Ansiedade , Imageamento por Ressonância Magnética , Tonsila do Cerebelo
5.
Alcohol Clin Exp Res ; 46(1): 114-128, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34773282

RESUMO

BACKGROUND: Negative emotional states are associated with the initiation and maintenance of alcohol use and drive relapse to drinking during withdrawal and protracted abstinence. Physical exercise is correlated with decreased negative affective symptoms, although a direct relationship between drinking patterns and exercise level has not been fully elucidated. METHODS: We incorporated intermittent running wheel access into a chronic continuous access, two-bottle choice alcohol drinking model in female C57BL/6J mice. Wheel access was granted intermittently once mice established a preference for alcohol over water. After 6 weeks, alcohol was removed (forced abstinence) and mice were given continuous access to unlocked or locked wheels. Negative affect-like behavior, home cage behavior, and metabolic activity were measured during protracted abstinence. RESULTS: Wheel access shifted drinking patterns in the mice, increasing drinking when the wheel was locked, and decreasing drinking when unlocked. Moreover, alcohol preference and consumption were strongly negatively correlated with the amount of running. An assessment of negative affect-like behavior in abstinence via the novelty suppressed feeding and saccharin preference tests (SPT) showed that unlimited wheel access mitigated abstinence-induced latency increases. Mice in abstinence also spent more time sleeping during the active dark cycle than control mice, providing additional evidence for abstinence-induced anhedonia- and depression-like behavior. Furthermore, running wheel access in abstinence decreased dark cycle sleep to comparable alcohol- and wheel-naïve mice. Given the positive impact of exercise and the negative impact of alcohol on metabolic health, we compared metabolic phenotypes of alcohol-abstinent mice with and without wheel access. Wheel access increased energy expenditure, carbon dioxide production, and oxygen consumption, providing a potential metabolic mechanism through which wheel access improves affective state. CONCLUSIONS: This study suggests that including exercise in AUD treatment regimens has the potential to reduce drinking, improve affective state during abstinence and could serve as a non-pharmacological approach to prevent the development of an AUD in high-risk individuals.


Assuntos
Abstinência de Álcool/psicologia , Consumo de Bebidas Alcoólicas/psicologia , Comportamento Animal/fisiologia , Condicionamento Físico Animal/psicologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Alcoolismo/terapia , Animais , Metabolismo Energético/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal/fisiologia , Sono/fisiologia
6.
J Neurosci ; 40(20): 3949-3968, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32277042

RESUMO

Excitatory signaling mediated by NMDARs has been shown to regulate mood disorders. However, current treatments targeting NMDAR subtypes have shown limited success in treating patients, highlighting a need for alternative therapeutic targets. Here, we identify a role for GluN2D-containing NMDARs in modulating emotional behaviors and neural activity in the bed nucleus of the stria terminalis (BNST). Using a GluN2D KO mouse line (GluN2D-/-), we assessed behavioral phenotypes across tasks modeling emotional behavior. We then used a combination of ex vivo electrophysiology and in vivo fiber photometry to assess changes in BNST plasticity, cell-specific physiology, and cellular activity profiles. GluN2D-/- male mice exhibit evidence of exacerbated negative emotional behavior, and a deficit in BNST synaptic potentiation. We also found that GluN2D is functionally expressed on corticotropin-releasing factor (CRF)-positive BNST cells implicated in driving negative emotional states, and recordings in mice of both sexes revealed increased excitatory and reduced inhibitory drive onto GluN2D-/- BNST-CRF cells ex vivo and increased activity in vivo Using a GluN2D conditional KO line (GluN2Dflx/flx) to selectively delete the subunit from the BNST, we find that BNST-GluN2Dflx/flx male mice exhibit increased depressive-like behaviors, as well as altered NMDAR function and increased excitatory drive onto BNST-CRF neurons. Together, this study supports a role for GluN2D-NMDARs in regulating emotional behavior through their influence on excitatory signaling in a region-specific manner, and suggests that these NMDARs may serve as a novel target for selectively modulating glutamate signaling in stress-responsive structures and cell populations.SIGNIFICANCE STATEMENT Excitatory signaling mediated through NMDARs plays an important role in shaping emotional behavior; however, the receptor subtypes/brain regions through which this occurs are poorly understood. Here, we demonstrate that loss of GluN2D-containing NMDARs produces an increase in anxiety- and depressive-like behaviors in mice, deficits in BNST synaptic potentiation, and increased activity in BNST-CRF neurons known to drive negative emotional behavior. Further, we determine that deleting GluN2D in the BNST leads to increased depressive-like behaviors and increased excitatory drive onto BNST-CRF cells. Collectively, these results demonstrate a role for GluN2D-NMDARs in regulating the activity of stress-responsive structures and neuronal populations in the adult brain, suggesting them as a potential target for treating negative emotional states in mood-related disorders.


Assuntos
Ansiedade/psicologia , Comportamento Animal/fisiologia , Depressão/psicologia , Receptores de N-Metil-D-Aspartato/fisiologia , Núcleos Septais/fisiologia , Sinapses/fisiologia , Animais , Hormônio Liberador da Corticotropina/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
7.
Alcohol Clin Exp Res ; 45(3): 518-529, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33434325

RESUMO

BACKGROUND: The medial prefrontal cortex (PFC) is crucial for regulating craving and alcohol seeking in alcohol use disorder (AUD) patients and alcohol seeking in animal models. Maladaptive changes in volitional ethanol (EtOH) intake have been associated with PFC function, yet synaptic adaptations within PFC have not been consistently detected in voluntary drinking rodent models. At least 80% of the neurons in PFC are glutamatergic pyramidal cells. Pyramidal cells provide the predominant cortical output to several brain regions relevant to AUD, including structures within the telencephalon (IT: e.g., basal ganglia, amygdala, other neocortical regions) and outside the telencephalon (ET: e.g., lateral hypothalamus, midbrain monoaminergic structures, thalamus). METHODS: In addition to their anatomical distinctions, studies from several laboratories have revealed that prefrontal cortical IT and ET pyramidal cells may be differentiated by specific electrophysiological parameters. These distinguishable parameters make it possible to readily classify pyramidal cells into separable subtypes. Here, we employed and validated the hyperpolarization sag ratio as a diagnostic proxy for separating ET (type A) and IT (type B) neurons. We recorded from deep-layer prelimbic PFC pyramidal cells of mice 1 day after 4 to 5 weeks of intermittent access (IA) EtOH exposure. RESULTS: Membrane properties were not altered by IA EtOH, but excitatory postsynaptic strength onto IT type B neurons was selectively enhanced in slices from IA EtOH mice. The increased excitatory drive was accompanied by enhanced mGlu2/3 receptor plasticity on IT type B neurons, providing a potential translational approach to mitigate cognitive and motivational changes to PFC function related to binge drinking. CONCLUSIONS: Together, these studies provide insight into the specific PFC neurocircuits altered by voluntary drinking. In addition, the findings provide an additional rationale for developing compounds that potentiate mGlu2 and/or mGlu3 receptor function as potential treatments for AUD.


Assuntos
Etanol/administração & dosagem , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Sinapses/efeitos dos fármacos
8.
Alcohol Clin Exp Res ; 45(5): 1028-1038, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33830508

RESUMO

BACKGROUND: For individuals with Alcohol Use Disorder (AUD), long-term recovery is difficult in part due to symptoms of anxiety that occur during early abstinence and can trigger relapse. Research in rodent models of AUD has identified the bed nucleus of the stria terminalis (BNST), a small, sexually dimorphic, subcortical region, as critical for regulating anxiety-like behaviors during abstinence, particularly in female mice. Furthermore, prolonged alcohol use and subsequent abstinence alter BNST afferent and efferent connections to other brain regions. To our knowledge, however, no studies of early abstinence have investigated BNST structural connectivity in humans during abstinence; this study addresses that gap. METHODS: Nineteen participants with AUD currently in early abstinence and 20 healthy controls completed a diffusion tensor imaging (DTI) scan. BNST structural connectivity was evaluated using probabilistic tractography. A linear mixed model was used to test between-groups differences in BNST network connectivity. Exploratory analyses were conducted to test for correlations between BNST connectivity and alcohol use severity and anxiety within the abstinence group. Sex was included as a factor for all analyses. RESULTS: The BNST showed stronger structural connectivity with the BNST network in early abstinence women than in control women, which was not seen in men. Women also showed region-specific differences, with stronger BNST-hypothalamus structural connectivity but weaker vmPFC-BNST structural connectivity than men. Exploratory analyses also demonstrated a relationship between alcohol use severity and vmPFC-BNST structural connectivity that was moderated by sex. CONCLUSIONS: This study is the first to demonstrate BNST structural connectivity differences in early abstinence and revealed key sex differences. The sex-specific differences in BNST structural connectivity during early abstinence could underlie known sex differences in abstinence symptoms and relapse risk and help to inform potential sex-specific treatments.


Assuntos
Abstinência de Álcool , Alcoolismo/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Núcleos Septais/diagnóstico por imagem , Adulto , Alcoolismo/fisiopatologia , Alcoolismo/psicologia , Ansiedade/psicologia , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Núcleos Septais/fisiopatologia , Fatores Sexuais , Adulto Jovem
9.
Addict Biol ; 26(2): e12861, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31991531

RESUMO

Alcohol Use Disorder (AUD) is a chronic, relapsing disease that impacts almost a third of Americans. Despite effective treatments for attaining sobriety, the majority of patients relapse within a year, making relapse a substantial barrier to long-term treatment success. A major factor contributing to relapse is heightened negative affect that results from the combination of abstinence-related increases in stress-reactivity and decreases in reward sensitivity. Substantial research has contributed to the understanding of reward-related changes in AUD. However, less is known about anxiety during abstinence, a critical component of understanding addiction as anxiety during abstinence can trigger relapse. Most of what we know about abstinence-related negative affect comes from rodent studies which have identified key brain regions responsible for abstinence-related behaviors. This abstinence network is composed of brain regions that make up the extended amygdala: the nucleus accumbens (NAcc), the central nucleus of the amygdala (CeA), and the bed nucleus of the stria terminalis (BNST). More recently, emerging evidence from rodent and human studies suggests a fourth brain region, the anterior insula, might be part of the abstinence network. Here, we review current rodent and human literature on the extended amygdala's role in alcohol abstinence and anxiety, present evidence for the anterior insula's role in the abstinence network, and provide future directions for research to further elucidate the neural underpinnings of abstinence in humans. A better understanding of the abstinence network is critical toward understanding and possibly preventing relapse in AUD.


Assuntos
Abstinência de Álcool/psicologia , Alcoolismo/patologia , Ansiedade/patologia , Comportamento Aditivo/patologia , Lobo Occipital/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Animais , Humanos , Lobo Occipital/diagnóstico por imagem , Recidiva , Recompensa , Roedores
10.
J Neurosci ; 39(3): 472-484, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30478032

RESUMO

Stress contributes to numerous psychiatric disorders. Corticotropin releasing factor (CRF) signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and ß-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, using Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the coexpression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENT Stress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent coexpression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between norepinephrine and CRF, and point to an action by which guanfacine may reduce negative affective responses.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Hormônio Liberador da Corticotropina/fisiologia , Neurônios/fisiologia , Núcleos Parabraquiais/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Guanfacina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia , Ovariectomia , Técnicas de Patch-Clamp , Proteína Quinase C-delta/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Restrição Física , Estresse Psicológico/fisiopatologia
11.
Neuroimage ; 210: 116555, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954845

RESUMO

The bed nucleus of the stria terminalis (BNST) is emerging as a critical region in multiple psychiatric disorders including anxiety, PTSD, and alcohol and substance use disorders. In conjunction with growing knowledge of the BNST, an increasing number of studies examine connections of the BNST and how those connections impact BNST function. The importance of this BNST network is highlighted by rodent studies demonstrating that projections from other brain regions regulate BNST activity and influence BNST-related behavior. While many animal and human studies replicate the components of the BNST network, to date, structural connections between the BNST and insula have only been described in rodents and have yet to be shown in humans. In this study, we used probabilistic tractography to examine BNST-insula structural connectivity in humans. We used two methods of dividing the insula: 1) anterior and posterior insula, to be consistent with much of the existing insula literature; and 2) eight subregions that represent informative cytoarchitectural divisions. We found evidence of a BNST-insula structural connection in humans, with the strongest BNST connectivity localized to the anteroventral insula, a region of agranular cortex. BNST-insula connectivity differed by hemisphere and was moderated by sex. These results translate rodent findings to humans and lay an important foundation for future studies examining the role of BNST-insula pathways in psychiatric disorders.


Assuntos
Córtex Cerebral/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Rede Nervosa/anatomia & histologia , Núcleos Septais/anatomia & histologia , Caracteres Sexuais , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Imagem Ecoplanar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Núcleos Septais/diagnóstico por imagem , Fatores Sexuais , Adulto Jovem
12.
J Neurosci ; 38(42): 8922-8942, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30150361

RESUMO

Stress is a precipitating agent in neuropsychiatric disease and initiates relapse to drug-seeking behavior in addicted patients. Targeting the stress system in protracted abstinence from drugs of abuse with anxiolytics may be an effective treatment modality for substance use disorders. α2A-adrenergic receptors (α2A-ARs) in extended amygdala structures play key roles in dampening stress responses. Contrary to early thinking, α2A-ARs are expressed at non-noradrenergic sites in the brain. These non-noradrenergic α2A-ARs play important roles in stress responses, but their cellular mechanisms of action are unclear. In humans, the α2A-AR agonist guanfacine reduces overall craving and uncouples craving from stress, yet minimally affects relapse, potentially due to competing actions in the brain. Here, we show that heteroceptor α2A-ARs postsynaptically enhance dorsal bed nucleus of the stria terminalis (dBNST) neuronal activity in mice of both sexes. This effect is mediated by hyperpolarization-activated cyclic nucleotide-gated cation channels because inhibition of these channels is necessary and sufficient for excitatory actions. Finally, this excitatory action is mimicked by clozapine-N-oxide activation of the Gi-coupled DREADD hM4Di in dBNST neurons and its activation elicits anxiety-like behavior in the elevated plus maze. Together, these data provide a framework for elucidating cell-specific actions of GPCR signaling and provide a potential mechanism whereby competing anxiogenic and anxiolytic actions of guanfacine may affect its clinical utility in the treatment of addiction.SIGNIFICANCE STATEMENT Stress affects the development of neuropsychiatric disorders including anxiety and addiction. Guanfacine is an α2A-adrenergic receptor (α2A-AR) agonist with actions in the bed nucleus of the stria terminalis (BNST) that produces antidepressant actions and uncouples stress from reward-related behaviors. Here, we show that guanfacine increases dorsal BNST neuronal activity through actions at postsynaptic α2A-ARs via a mechanism that involves hyperpolarization-activated cyclic nucleotide gated cation channels. This action is mimicked by activation of the designer receptor hM4Di expressed in the BNST, which also induces anxiety-like behaviors. Together, these data suggest that postsynaptic α2A-ARs in BNST have excitatory actions on BNST neurons and that these actions can be phenocopied by the so-called "inhibitory" DREADDs, suggesting that care must be taken regarding interpretation of data obtained with these tools.


Assuntos
Ansiedade/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Neurônios/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Núcleos Septais/fisiologia , Estresse Psicológico/fisiopatologia , Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Animais , Catecolaminas/metabolismo , Feminino , Guanfacina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos Septais/diagnóstico por imagem , Núcleos Septais/metabolismo
13.
Alcohol Clin Exp Res ; 43(10): 2000-2013, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31403699

RESUMO

Alcohol use disorder (AUD) afflicts a large number of individuals, families, and communities globally. Affective disturbances, including stress, depression, and anxiety, are highly comorbid with AUD, contributing in some cases to initial alcohol use and continued use. Negative affect has a particularly strong influence on the withdrawal/abstinence stage of addiction as individuals with AUD frequently report stressful events, depression, and anxiety as key factors for relapse. Treatment options for negative affect associated with AUD are limited and often ineffective, highlighting the pressing need for preclinical studies examining the underlying neural circuitry driving AUD-associated negative affect. The extended amygdala (EA) is a set of brain areas collectively involved in generating and regulating affect, and extensive research has defined a critical role for the EA in all facets of substance use disorder. Here, we review the expansive historical literature examining the effects of ethanol exposure on the EA, with an emphasis on the complex EA neural circuitry driving negative affect in all phases of the alcohol addiction cycle. Specifically, this review focuses on the effects of alcohol exposure on the neural circuitry in 2 key components of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis. Additionally, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and neural circuitry in the EA, with the long-term goal of developing better diagnostic tools and new pharmacological targets aimed at treating negative affect in AUD. The concepts detailed here will serve as the foundation for a companion review focusing on the potential for the endogenous cannabinoid system in the EA as a novel target for treating the stress, anxiety, and negative emotional state driving AUD.


Assuntos
Afeto/efeitos dos fármacos , Alcoolismo/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Depressores do Sistema Nervoso Central/efeitos adversos , Depressão/fisiopatologia , Depressão/psicologia , Etanol/efeitos adversos , Alcoolismo/psicologia , Animais , Depressão/induzido quimicamente , Humanos , Rede Nervosa/fisiopatologia
14.
Alcohol Clin Exp Res ; 43(10): 2014-2027, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31373708

RESUMO

High rates of relapse are a chronic and debilitating obstacle to effective treatment of alcohol use disorder (AUD); however, no effective treatments are available to treat symptoms induced by protracted abstinence. In the first part of this 2-part review series, we examine the literature supporting the effects of alcohol exposure within the extended amygdala (EA) neural circuitry. In Part 2, we focus on a potential way to combat negative affect associated with AUD, by exploring the therapeutic potential of the endogenous cannabinoid (eCB) system. The eCB system is a potent modulator of neural activity in the brain, and its ability to mitigate stress and negative affect has long been an area of interest for developing novel therapeutics. This review details the recent advances in our understanding of eCB signaling in 2 key regions of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), and their role in regulating negative affect. Despite an established role for EA eCB signaling in reducing negative affect, few studies have examined the potential for eCB-based therapies to treat AUD-associated negative affect. In this review, we present an overview of studies focusing on eCB signaling in EA and cannabinoid modulation on EA synaptic activity. We further discuss studies suggesting dysregulation of eCB signaling in models of AUD and propose that pharmacological augmentation of eCB could be a novel approach to treat aspects of AUD. Lastly, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and the EA eCB system that could yield new pharmacotherapies targeting negative affective symptoms associated with AUD.


Assuntos
Alcoolismo/fisiopatologia , Alcoolismo/terapia , Núcleo Central da Amígdala/fisiopatologia , Endocanabinoides , Núcleos Septais/fisiopatologia , Transdução de Sinais , Animais , Depressão/induzido quimicamente , Depressão/fisiopatologia , Depressão/psicologia , Humanos , Receptores de Canabinoides/efeitos dos fármacos
15.
Alcohol Clin Exp Res ; 43(8): 1695-1701, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31141179

RESUMO

BACKGROUND: Relapse is a critical barrier to effective long-term treatment of alcoholism, and stress is often cited as a key trigger to relapse. Numerous studies suggest that stress-induced reinstatement to drug-seeking behaviors is mediated by norepinephrine (NE) and corticotropin-releasing factor (CRF) signaling interactions in the bed nucleus of the stria terminalis (BNST), a brain region critical to many behavioral and physiologic responses to stressors. Here, we sought to directly examine the effects of NE on BNST CRF neuron activity and determine whether these effects may be modulated by chronic intermittent EtOH (CIE) exposure or a single restraint stress. METHODS: Adult male CRF-tomato reporter mice were treatment-naïve, or either exposed to CIE for 2 weeks or to a single 1-hour restraint stress. Effects of application of exogenous NE on BNST CRF neuron activity were assessed via whole-cell patch-clamp electrophysiological techniques. RESULTS: We found that NE depolarized BNST CRF neurons in naïve mice in a ß-adrenergic receptor (AR)-dependent mechanism. CRF neurons from CIE- or stress-exposed mice had significantly elevated basal resting membrane potential compared to naïve mice. Furthermore, CIE and stress individually disrupted the ability of NE to depolarize CRF neurons, suggesting that both stress and CIE utilize ß-AR signaling to modulate BNST CRF neurons. Neither stress nor CIE altered the ability of exogenous NE to inhibit evoked glutamatergic transmission onto BNST CRF neurons as shown in naïve mice, a mechanism previously shown to be α-AR-dependent. CONCLUSIONS: Altogether, these findings suggest that stress and CIE interact with ß-AR signaling to modulate BNST CRF neuron activity, potentially disrupting the α/ß-AR balance of BNST CRF neuronal excitability. Restoration of α/ß-AR balance may lead to novel therapies for the alleviation of many stress-related disorders.


Assuntos
Neurônios Adrenérgicos/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Etanol/efeitos adversos , Norepinefrina/farmacologia , Restrição Física/fisiologia , Núcleos Septais/fisiologia , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas de Introdução de Genes , Ácido Glutâmico/fisiologia , Ácido Cinurênico/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Norepinefrina/antagonistas & inibidores , Picrotoxina/farmacologia , Propranolol/farmacologia , Núcleos Septais/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia
16.
Alcohol Clin Exp Res ; 41(12): 1986-1999, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940382

RESUMO

Corticotropin releasing factor (CRF) is a neuropeptide that plays a key role in behavioral and physiological responses to stress. A large body of animal literature implicates CRF acting at type 1 CRF receptors (CRFR1) in consumption by alcohol-dependent subjects, stress-induced reinstatement of alcohol seeking, and possibly binge alcohol consumption. These studies have encouraged recent pilot studies of CRFR1 antagonists in humans with alcohol use disorder (AUD). It was a great disappointment to many in the field that these studies failed to show an effect of these compounds on stress-induced alcohol craving. Here, we examine these studies to explore potential limitations and discuss preclinical and human literature to ask whether CRFR1 is still a valid drug target to pursue for the treatment of AUD.


Assuntos
Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Terapia de Alvo Molecular/métodos , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Animais , Humanos
17.
Addict Biol ; 22(2): 275-290, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26549202

RESUMO

N-Methyl-d-aspartate receptors (NMDARs) are major targets of both acute and chronic alcohol, as well as regulators of plasticity in a number of brain regions. Aberrant plasticity may contribute to the treatment resistance and high relapse rates observed in alcoholics. Recent work suggests that chronic alcohol treatment preferentially modulates both the expression and subcellular localization of NMDARs containing the GluN2B subunit. Signaling through synaptic and extrasynaptic GluN2B-NMDARs has already been implicated in the pathophysiology of various other neurological disorders. NMDARs interact with a large number of proteins at the glutamate synapse, and a better understanding of how alcohol modulates this proteome is needed. We employed a discovery-based proteomic approach in subcellular fractions of hippocampal tissue from chronic intermittent alcohol (CIE)-exposed C57Bl/6J mice to gain insight into alcohol-induced changes in GluN2B signaling complexes. Protein enrichment analyses revealed changes in the association of post-synaptic proteins, including scaffolding, glutamate receptor and PDZ-domain binding proteins with GluN2B. In particular, GluN2B interaction with metabotropic glutamate (mGlu)1/5 receptor-dependent long-term depression (LTD)-associated proteins such as Arc and Homer 1 was increased, while GluA2 was decreased. Accordingly, we found a lack of mGlu1/5 -induced LTD while α1 -adrenergic receptor-induced LTD remained intact in hippocampal CA1 following CIE. These data suggest that CIE specifically disrupts mGlu1/5 -LTD, representing a possible connection between NMDAR and mGlu receptor signaling. These studies not only demonstrate a new way in which alcohol can modulate plasticity in the hippocampus but also emphasize the utility of this discovery-based proteomic approach to generate new hypotheses regarding alcohol-related mechanisms.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Proteínas do Citoesqueleto/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Etanol/administração & dosagem , Hipocampo/metabolismo , Proteínas de Arcabouço Homer/efeitos dos fármacos , Proteínas de Arcabouço Homer/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
18.
J Neurosci ; 34(28): 9319-31, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009265

RESUMO

α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress-reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α(2A)-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2. Here we provide immunoelectron microscopic data showing that many asymmetric axosomatic synapses in the BNST contain α(2A)-ARs. Further, we examined optically evoked glutamate release ex vivo in BNST from mice with virally delivered channelrhodopsin2 (ChR2) expression in PBN. In BNST from these animals, ChR2 partially colocalized with CGRP, and activation generated EPSCs in dorsal anterolateral BNST neurons that elicited two cell-type-specific outcomes: (1) feedforward inhibition or (2) an EPSP that elicited firing. We found that the α(2A)-AR agonist guanfacine selectively inhibited this PBN input to the BNST, preferentially reducing the excitatory response in ex vivo mouse brain slices. To begin to assess the overall impact of α(2A)-AR control of this PBN input on BNST excitatory transmission, we used a Thy1-COP4 mouse line with little postsynaptic ChR2 expression nor colocalization of ChR2 with CGRP in the BNST. In slices from these mice, we found that guanfacine enhanced, rather than suppressed, optogenetically initiated excitatory drive in BNST. Thus, our study reveals distinct actions of PBN afferents within the BNST and suggests that α(2A)-AR agonists may filter excitatory transmission in the BNST by inhibiting a component of the PBN input while enhancing the actions of other inputs.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Receptores Adrenérgicos alfa 2/metabolismo , Núcleos Septais/citologia , Núcleos Septais/fisiologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/fisiologia
19.
Alcohol Clin Exp Res ; 39(11): 2154-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26503065

RESUMO

BACKGROUND: Ethanol (EtOH) modulation of central amygdala (CeA) neurocircuitry plays a key role in the development of alcoholism via activation of the corticotropin-releasing factor (CRF) receptor (CRFR) system. Previous work has predominantly focused on EtOH × CRF interactions on the CeA GABA circuitry; however, our laboratory recently showed that CRF enhances CeA glutamatergic transmission. Therefore, this study sought to determine whether EtOH modulates CeA glutamate transmission via activation of CRF signaling. METHODS: The effects of EtOH on spontaneous excitatory postsynaptic currents (sEPSCs) and basal resting membrane potentials were examined via standard electrophysiology methods in adult male C57BL/6J mice. Local ablation of CeA CRF neurons (CRF(CeAhDTR) ) was achieved by targeting the human diphtheria toxin receptor (hDTR) to CeA CRF neurons with an adeno-associated virus. Ablation was quantified post hoc with confocal microscopy. Genetic targeting of the diphtheria toxin active subunit to CRF neurons (CRF(DTA) mice) ablated CRF neurons throughout the central nervous system, as assessed by quantitative reverse transcriptase polymerase chain reaction quantification of CRF mRNA. RESULTS: Acute bath application of EtOH significantly increased sEPSC frequency in a concentration-dependent manner in CeA neurons, and this effect was blocked by pretreatment of co-applied CRFR1 and CRFR2 antagonists. In experiments utilizing a CRF-tomato reporter mouse, EtOH did not significantly alter the basal membrane potential of CeA CRF neurons. The ability of EtOH to enhance CeA sEPSC frequency was not altered in CRF(CeAhDTR) mice despite a ~78% reduction in CeA CRF cell counts. The ability of EtOH to enhance CeA sEPSC frequency was also not altered in the CRF(DTA) mice despite a 3-fold reduction in CRF mRNA levels. CONCLUSIONS: These findings demonstrate that EtOH enhances spontaneous glutamatergic transmission in the CeA via a CRFR-dependent mechanism. Surprisingly, our data suggest that this action may not require endogenous CRF.


Assuntos
Núcleo Central da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Etanol/farmacologia , Ácido Glutâmico/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores de Hormônio Liberador da Corticotropina/agonistas , Transmissão Sináptica/fisiologia
20.
Proc Natl Acad Sci U S A ; 109(5): E278-87, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22219357

RESUMO

The bed nucleus of the stria terminalis (BNST) is a critical region for alcohol/drug-induced negative affect and stress-induced reinstatement. NMDA receptor (NMDAR)-dependent plasticity, such as long-term potentiation (LTP), has been postulated to play key roles in alcohol and drug addiction; yet, to date, little is understood regarding the mechanisms underlying LTP of the BNST, or its regulation by ethanol. Acute and chronic exposure to ethanol modulates glutamate transmission via actions on NMDARs. Despite intense investigation, tests of subunit specificity of ethanol actions on NMDARs using pharmacological approaches have produced mixed results. Thus, we use a conditional GluN2B KO mouse line to assess both basal and ethanol-dependent function of this subunit at glutamate synapses in the BNST. Deletion of GluN2B eliminated LTP, as well as actions of ethanol on NMDAR function. Further, we show that chronic ethanol exposure enhances LTP formation in the BNST. Using KO-validated pharmacological approaches with Ro25-6981 and memantine, we provide evidence suggesting that chronic ethanol exposure enhances LTP in the BNST via paradoxical extrasynaptic NMDAR involvement. These findings demonstrate that GluN2B is a key point of regulation for ethanol's actions and suggest a unique role of extrasynaptic GluN2B-containing receptors in facilitating LTP.


Assuntos
Etanol/farmacologia , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Animais , Etanol/administração & dosagem , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA