Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(4): 984-987, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790995

RESUMO

Few-cycle pulses present an essential tool to track ultrafast dynamics in matter and drive strong field effects. To address photon-hungry applications, high average power lasers are used which, however, cannot directly provide sub-100-fs pulse durations. Post-compression of laser pulses by spectral broadening and dispersion compensation is the most efficient method to overcome this limitation. We present a notably compact setup which turns a 0.1-GW peak power, picosecond burst-mode laser into a 2.9-GW peak power, 8.2-fs source. The 120-fold pulse duration shortening is accomplished in a two-stage hybrid multi-pass, multi-plate compression setup. To our knowledge, neither shorter pulses nor higher peak powers have been reported to-date from bulk multi-pass cells alone, manifesting the power of the hybrid approach. It puts, for instance, compact, cost-efficient, and high repetition rate attosecond sources within reach.

2.
Opt Lett ; 48(7): 1842-1845, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221780

RESUMO

Post-compression methods for ultrafast laser pulses typically face challenging limitations, including saturation effects and temporal pulse breakup, when large compression factors and broad bandwidths are targeted. To overcome these limitations, we exploit direct dispersion control in a gas-filled multi-pass cell, enabling, for the first time to the best of our knowledge, single-stage post-compression of 150 fs pulses and up to 250 µJ pulse energy from an ytterbium (Yb) fiber laser down to sub-20 fs. Dispersion-engineered dielectric cavity mirrors are used to achieve nonlinear spectral broadening dominated by self-phase modulation over large compression factors and bandwidths at 98% throughput. Our method opens a route toward single-stage post-compression of Yb lasers into the few-cycle regime.

3.
Opt Express ; 30(3): 3404-3415, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209599

RESUMO

Ultrafast laser pulses featuring both high spatio-temporal beam quality and excellent energy stability are crucial for many applications. Here, we present a seed laser with high beam quality and energy stability, based on a collinear optical parametric chirped pulse amplification (OPCPA) stage, delivering 46 µJ pulses with a 25 fs Fourier limit at 1 kHz repetition rate. While saturation of the OPCPA stage is necessary for achieving the highest possible energy stability, it also leads to a degradation of the beam quality. Using simulations, we show that spectrally dependent, rotationally symmetric aberrations dominate the collinear OPCPA in saturation. We experimentally characterize these aberrations and then remove distinct spatial frequencies to greatly improve the spectral homogeneity of the beam quality, while keeping an excellent energy stability of 0.2 % rms measured over 70 hours.

4.
Appl Opt ; 51(31): 7586-90, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23128707

RESUMO

Nd:YAG lasers with output power levels of tens of watts, a nearly diffraction-limited beam quality, and a linearly polarized continuous wave output are commonly pumped by laser diodes at a wavelength around 808 nm, where the pump light spectrum is matched well to the absorption maximum of Nd:YAG. As a consequence, low Nd(3+)-doping concentrations of the laser crystals are required in order to minimize thermally induced stress. The use of higher Neodymium concentrations requires pump wavelengths beside the 808 nm absorption maximum and will furthermore result in changed thermo-optical behavior of the material. We present simulations and experimental results on how the doping concentration of Nd(3+) influences the fraction of pump light converted into heat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA