Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Chembiochem ; 25(8): e202400121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38349346

RESUMO

Carboxylic acid reductase enzymes (CARs) are well known for the reduction of a wide range of carboxylic acids to the respective aldehydes. One of the essential CAR domains - the reductase domain (R-domain) - was recently shown to catalyze the standalone reduction of carbonyls, including aldehydes, which are typically considered to be the final product of carboxylic acid reduction by CAR. We discovered that the respective full-length CARs were equally able to reduce aldehydes. Herein we aimed to shed light on the impact of this activity on aldehyde production and acid reduction in general. Our data explains previously inexplicable results and a new CAR from Mycolicibacterium wolinskyi is presented.


Assuntos
Aldeído Redutase , Oxirredutases , Aldeídos , Ácidos Carboxílicos
2.
Microb Cell Fact ; 23(1): 9, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172920

RESUMO

BACKGROUND: Existing plasmid systems offer a fundamental foundation for gene expression in Cupriavidus necator; however, their applicability is constrained by the limitations of conjugation. Low segregational stabilities and plasmid copy numbers, particularly in the absence of selection pressure, pose challenges. Phytases, recognized for their widespread application as supplements in animal feed to enhance phosphate availability, present an intriguing prospect for heterologous production in C. necator. The establishment of stable, high-copy number plasmid that can be electroporated would support the utilization of C. necator for the production of single-cell protein from CO2. RESULTS: In this study, we introduce a novel class of expression plasmids specifically designed for electroporation. These plasmids contain partitioning systems to boost segregation stability, eliminating the need for selection pressure. As a proof of concept, we successfully produced Escherichia coli derived AppA phytase in C. necator H16 PHB- 4 using these improved plasmids. Expression was directed by seven distinct promoters, encompassing the constitutive j5 promoter, hydrogenase promoters, and those governing the Calvin-Benson-Bassham cycle. The phytase activities observed in recombinant C. necator H16 strains ranged from 2 to 50 U/mg of total protein, contingent upon the choice of promoter and the mode of cell cultivation - heterotrophic or autotrophic. Further, an upscaling experiment conducted in a 1 l fed-batch gas fermentation system resulted in the attainment of the theoretical biomass. Phytase activity reached levels of up to 22 U/ml. CONCLUSION: The new expression system presented in this study offers a highly efficient platform for protein production and a wide array of synthetic biology applications. It incorporates robust promoters that exhibit either constitutive activity or can be selectively activated when cells transition from heterotrophic to autotrophic growth. This versatility makes it a powerful tool for tailored gene expression. Moreover, the potential to generate active phytases within C. necator H16 holds promising implications for the valorization of CO2 in the feed industry.


Assuntos
6-Fitase , Cupriavidus necator , Cupriavidus necator/metabolismo , 6-Fitase/genética , 6-Fitase/metabolismo , Dióxido de Carbono/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo
3.
Adv Synth Catal ; 365(1): 37-42, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37082351

RESUMO

Various widely applied compounds contain cyano-groups, and this functional group serves as a chemical handle for a whole range of different reactions. We report a cyanide free chemoenzymatic cascade for nitrile synthesis. The reaction pathway starts with a reduction of carboxylic acid to aldehyde by carboxylate reductase enzymes (CARs) applied as living cell biocatalysts. The second - chemical - step includes in situ oxime formation with hydroxylamine. The final direct step from oxime to nitrile is catalyzed by aldoxime dehydratases (Oxds). With compatible combinations of a CAR and an Oxd, applied in one-pot two-step reactions, several aliphatic and aryl-aliphatic target nitriles were obtained in more than 80% conversion. Phenylacetonitrile, for example, was prepared in 78% isolated yield. This chemoenzymatic route does not require cyanide salts, toxic metals, or undesired oxidants in contrast to entirely chemical procedures.

4.
Proc Natl Acad Sci U S A ; 117(37): 22974-22983, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32873649

RESUMO

Medium-chain fatty alcohols (MCFOHs, C6 to C12) are potential substitutes for fossil fuels, such as diesel and jet fuels, and have wide applications in various manufacturing processes. While today MCFOHs are mainly sourced from petrochemicals or plant oils, microbial biosynthesis represents a scalable, reliable, and sustainable alternative. Here, we aim to establish a Saccharomyces cerevisiae platform capable of selectively producing MCFOHs. This was enabled by tailoring the properties of a bacterial carboxylic acid reductase from Mycobacterium marinum (MmCAR). Extensive protein engineering, including directed evolution, structure-guided semirational design, and rational design, was implemented. MmCAR variants with enhanced activity were identified using a growth-coupled high-throughput screening assay relying on the detoxification of the enzyme's substrate, medium-chain fatty acids (MCFAs). Detailed characterization demonstrated that both the specificity and catalytic activity of MmCAR was successfully improved and a yeast strain harboring the best MmCAR variant generated 2.8-fold more MCFOHs than the strain expressing the unmodified enzyme. Through deletion of the native MCFA exporter gene TPO1, MCFOH production was further improved, resulting in a titer of 252 mg/L for the final strain, which represents a significant improvement in MCFOH production in minimal medium by S. cerevisiae.


Assuntos
Álcoois Graxos/metabolismo , Oxirredutases/metabolismo , Antiporters/metabolismo , Biocombustíveis , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Proteínas de Transporte de Cátions Orgânicos/genética , Oxirredutases/fisiologia , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Chembiochem ; 22(10): 1823-1832, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33527702

RESUMO

Accessing aldehydes from carboxylate moieties is often a challenging task. In this regard, carboxylate reductases (CARs) are promising catalysts provided by nature that are able to accomplish this task in just one step, avoiding over-reduction to the alcohol product. However, the heterologous expression of CARs can be quite difficult due to the excessive formation of insoluble protein, thus hindering further characterization and application of the enzyme. Here, the heterologous production of the carboxylate reductase from Nocardia otitidiscaviarum (NoCAR) was optimized by a combination of i) optimized cultivation conditions, ii) post-translational modification with a phosphopantetheinyl transferase and iii) selection of an appropriate expression strain. Especially, the selection of Escherichia coli tuner cells as host had a strong effect on the final 110-fold increase in the specific activity of NoCAR. This highly active NoCAR was used to reduce sodium benzoate to benzaldehyde, and it was successfully assembled with an in vitro regeneration of ATP and NADPH, being capable of reducing about 30 mM sodium benzoate with high selectivity in only 2 h of reaction.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Nocardia/enzimologia , Aldeído Oxirredutases/genética , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , NADP/metabolismo , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Benzoato de Sódio/química , Benzoato de Sódio/metabolismo , Solubilidade
6.
Molecules ; 25(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481666

RESUMO

Nitrile hydratases (NHase) catalyze the hydration of nitriles to the corresponding amides. We report on the heterologous expression of various nitrile hydratases. Some of these enzymes have been investigated by others and us before, but sixteen target proteins represent novel sequences. Of 21 target sequences, 4 iron and 16 cobalt containing proteins were functionally expressed from Escherichia coli BL21 (DE3) Gold. Cell free extracts were used for activity profiling and basic characterization of the NHases using the typical NHase substrate methacrylonitrile. Co-type NHases are more tolerant to high pH than Fe-type NHases. A screening for activity on three structurally diverse nitriles was carried out. Two novel Co-dependent NHases from Afipia broomeae and Roseobacter sp. and a new Fe-type NHase from Gordonia hydrophobica were very well expressed and hydrated methacrylonitrile, pyrazine-carbonitrile, and 3-amino-3-(p-toluoyl)propanenitrile. The Co-dependent NHases from Caballeronia jiangsuensis and Microvirga lotononidis, as well as two Fe-dependent NHases from Pseudomonades, were-in addition-able to produce the amide from cinnamonitrile. Summarizing, seven so far uncharacterized NHases are described to be promising biocatalysts.


Assuntos
Cobalto/metabolismo , Hidroliases/metabolismo , Ferro/metabolismo , Burkholderiaceae/metabolismo , Catálise , Escherichia coli/metabolismo , Metaloproteínas/metabolismo , Methylobacteriaceae/metabolismo , Pseudomonas/metabolismo
7.
Chemistry ; 25(24): 6119-6123, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30866114

RESUMO

The direct generation of aldehydes from carboxylic acids is often a challenging synthetic task but undoubtedly attractive in view of abundant supply of such feedstocks from nature. Though long known, biocatalytic carboxylate reductions are at an early stage of development, presumably because of their co-factor requirement. To establish an alternative to whole-cell-based carboxylate reductions which are limited by side reactions, we developed an in vitro multi-enzyme system that allows for quantitative reductions of various carboxylic acids with full recycling of all cofactors and prevention of undesired over-reductions. Regeneration of adenosine 5'-triphosphate is achieved through the simultaneous action of polyphosphate kinases from Meiothermus ruber and Sinorhizobium meliloti and ß-nicotinamide adenine dinucleotide 2'-phosphate is reduced by a glucose dehydrogenase. Under these conditions and in the presence of the carboxylate reductases from Neurospora crassa or Nocardia iowensis, various aromatic, heterocyclic and aliphatic carboxylic acids were quantitatively reduced to the respective aldehydes.

8.
Chembiochem ; 19(4): 312-316, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29131473

RESUMO

Hydroxynitrile lyase from the white rabbit's foot fern Davallia tyermannii (DtHNL) catalyzes the enantioselective synthesis of α-cyanohydrins, which are key building blocks for pharmaceutical and agrochemical industries. An efficient and competitive process necessitates the availability and robustness of the biocatalyst. Herein, the recombinant production of DtHNL1 in Komagataella phaffii, yielding approximately 900 000 U L-1 , is described. DtHNL1 constitutes approximately 80 % of the total protein content. The crude enzyme was immobilized. Crosslinked enzyme aggregates (CLEAs) resulted in significant enhancement of the biocatalyst stability under acidic conditions (activity retained after 168 h at pH 2.4). The DtHNL1-CLEA was employed for (R)-mandelonitrile synthesis (99 % conversion, 98 % enantiomeric excess) in a biphasic system, and evaluated for the synthesis of (R)-hydroxypivaldehyde cyanohydrin under reaction conditions that immediately inactivated non-immobilized DtHNL1. The results show the DtHNL1-CLEA to be a stable biocatalyst for the synthesis of enantiomerically pure cyanohydrins under acidic conditions.


Assuntos
Aldeído Liases/metabolismo , Biocatálise , Enzimas Imobilizadas/metabolismo , Gleiquênias/enzimologia , Nitrilas/metabolismo , Pichia/enzimologia , Aldeído Liases/biossíntese , Aldeído Liases/química , Enzimas Imobilizadas/biossíntese , Enzimas Imobilizadas/química , Gleiquênias/microbiologia , Nitrilas/química , Agregados Proteicos , Estereoisomerismo
9.
Microb Cell Fact ; 17(1): 131, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30153835

RESUMO

BACKGROUND: Tubercidin (TBN), an adenosine analog with potent antimycobacteria and antitumor bioactivities, highlights an intriguing structure, in which a 7-deazapurine core is linked to the ribose moiety by an N-glycosidic bond. However, the molecular logic underlying the biosynthesis of this antibiotic has remained poorly understood. RESULTS: Here, we report the discovery and characterization of the TBN biosynthetic pathway from Streptomyces tubercidicus NBRC 13090 via reconstitution of its production in a heterologous host. We demonstrated that TubE specifically utilizes phosphoribosylpyrophosphate and 7-carboxy-7-deazaguanine for the precise construction of the deazapurine nucleoside scaffold. Moreover, we provided biochemical evidence that TubD functions as an NADPH-dependent reductase, catalyzing irreversible reductive deamination. Finally, we verified that TubG acts as a Nudix hydrolase, preferring Co2+ for the maintenance of maximal activity, and is responsible for the tailoring hydrolysis step leading to TBN. CONCLUSIONS: These findings lay a foundation for the rational generation of TBN analogs through synthetic biology strategy, and also open the way for the target-directed search of TBN-related antibiotics.


Assuntos
Streptomyces/metabolismo , Biologia Sintética/métodos , Tubercidina/metabolismo , Tubercidina/biossíntese
10.
Angew Chem Int Ed Engl ; 57(41): 13406-13423, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-29600541

RESUMO

Human enzymes have been widely studied in various disciplines. The number of reactions taking place in the human body is vast, and so is the number of potential catalysts for synthesis. Herein, we focus on the application of human enzymes that catalyze chemical reactions in course of the metabolism of drugs and xenobiotics. Some of these reactions have been explored on the preparative scale. The major field of application of human enzymes is currently drug development, where they are applied for the synthesis of drug metabolites.


Assuntos
Enzimas/metabolismo , Humanos
11.
Adv Synth Catal ; 358(21): 3414-3421, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27917101

RESUMO

The enzymatic reduction of carboxylic acids is in its infancy with only a handful of biocatalysts available to this end. We have increased the spectrum of carboxylate-reducing enzymes (CARs) with the sequence of a fungal CAR from Neurospora crassa OR74A (NcCAR). NcCAR was efficiently expressed in E. coli using an autoinduction protocol at low temperature. It was purified and characterized in vitro, revealing a broad substrate acceptance, a pH optimum at pH 5.5-6.0, a Tm of 45 °C and inhibition by the co-product pyrophosphate which can be alleviated by the addition of pyrophosphatase. The synthetic utility of NcCAR was demonstrated in a whole-cell biotransformation using the Escherichia coli K-12 MG1655 RARE strain in order to suppress overreduction to undesired alcohol. The fragrance compound piperonal was prepared from piperonylic acid (30 mM) on gram scale in 92 % isolated yield in >98% purity. This corresponds to a productivity of 1.5 g/L/h.

12.
Chembiochem ; 16(16): 2373-8, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26391327

RESUMO

7-Cyano-7-deazaguanine synthase (E.C. 6.3.4.20) is an enzyme that catalyzes the formation of a nitrile from a carboxylic acid and ammonia at the expense of ATP. The protein from G. kaustophilus was heterologously expressed, and its biochemical characteristics were explored by using a newly developed HPLC-MS based assay, (31) P NMR, and a fluorescence-based thermal-shift assay. The protein showed the expected high thermostability, had a pH optimum at pH 9.5, and an apparent temperature optimum at 60 °C. We observed strict substrate specificity of QueC for the natural substrate 7-carboxy-7-deazaguanine, and determined AMP and pyrophosphate as co-products of preQ0.


Assuntos
Proteínas de Bactérias/metabolismo , Geobacillus/enzimologia , Sequência de Aminoácidos , Aminoidrolases/química , Aminoidrolases/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Guanosina/análogos & derivados , Guanosina/química , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Estabilidade Proteica , Alinhamento de Sequência , Especificidade por Substrato , Temperatura
13.
Microb Cell Fact ; 14: 82, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26062974

RESUMO

BACKGROUND: Getting access to authentic human drug metabolites is an important issue during the drug discovery and development process. Employing recombinant microorganisms as whole-cell biocatalysts constitutes an elegant alternative to organic synthesis to produce these compounds. The present work aimed for the generation of an efficient whole-cell catalyst based on the flavin monooxygenase isoform 2 (FMO2), which is part of the human phase I metabolism. RESULTS: We show for the first time the functional expression of human FMO2 in E. coli. Truncations of the C-terminal membrane anchor region did not result in soluble FMO2 protein, but had a significant effect on levels of recombinant protein. The FMO2 biocatalysts were employed for substrate screening purposes, revealing trifluoperazine and propranolol as FMO2 substrates. Biomass cultivation on the 100 L scale afforded active catalyst for biotransformations on preparative scale. The whole-cell conversion of trifluoperazine resulted in perfectly selective oxidation to 48 mg (46% yield) of the corresponding N (1)-oxide with a purity >98%. CONCLUSIONS: The generated FMO2 whole-cell catalysts are not only useful as screening tool for human metabolites of drug molecules but more importantly also for their chemo- and regioselective preparation on the multi-milligram scale.


Assuntos
Escherichia coli/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Preparações Farmacêuticas/metabolismo , Biocatálise , Dinitrocresóis/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Oxigenases de Função Mista/genética , Propranolol/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Trifluoperazina/metabolismo
14.
Microb Cell Fact ; 13: 5, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24401081

RESUMO

Budding yeasts are important expression hosts for the production of recombinant proteins.The choice of the right promoter is a crucial point for efficient gene expression, as most regulations take place at the transcriptional level. A wide and constantly increasing range of inducible, derepressed and constitutive promoters have been applied for gene expression in yeasts in the past; their different behaviours were a reflection of the different needs of individual processes.Within this review we summarize the majority of the large available set of carbon source dependent promoters for protein expression in yeasts, either induced or derepressed by the particular carbon source provided. We examined the most common derepressed promoters for Saccharomyces cerevisiae and other yeasts, and described carbon source inducible promoters and promoters induced by non-sugar carbon sources. A special focus is given to promoters that are activated as soon as glucose is depleted, since such promoters can be very effective and offer an uncomplicated and scalable cultivation procedure.


Assuntos
Carbono/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Simportadores/genética , Simportadores/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
15.
Green Chem ; 26(3): 1338-1344, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323304

RESUMO

Novel synthetic strategies for the production of high-value chemicals based on the 12 principles of green chemistry are highly desired. Herein, we present a proof of concept for two novel chemo-enzymatic one-pot cascades allowing for the production of valuable fragrance and flavor aldehydes. We utilized renewable phenylpropenes, such as eugenol from cloves or estragole from estragon, as starting materials. For the first strategy, Pd-catalyzed isomerization of the allylic double bond and subsequent enzyme-mediated (aromatic dioxygenase, ADO) alkene cleavage were performed to obtain the desired aldehydes. In the second route, the double bond was oxidized to the corresponding ketone via a copper-free Wacker oxidation protocol followed by enzymatic Baeyer-Villiger oxidation (phenylacetone monooxygenase from Thermobifida fusca), esterase-mediated (esterase from Pseudomonas fluorescens, PfeI) hydrolysis and subsequent oxidation of the primary alcohol (alcohol dehydrogenase from Pseudomonas putida, AlkJ) to the respective aldehyde products. Eight different phenylpropene derivatives were subjected to these reaction sequences, allowing for the synthesis of seven aldehydes in up to 55% yield after 4 reaction steps (86% for each step).

16.
J Biotechnol ; 382: 44-50, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38266924

RESUMO

Mycobacterium marinum CAR (MmCAR) is one of the most widely used CARs as the key enzyme for the synthesis of aldehydes, alcohols and further products from the respective carboxylic acids. Herein, we describe the first functionally secreted 131 kDa CAR and its isolated A-domain using Komagataella phaffii and a methanol-free constitutive expression strategy. Precipitated and lyophilized MmCAR (500 µg) was isolated from the culture supernatant and showed no decrease in activity for piperonylic acid (80% conversion), even when stored for up to 3 weeks at 4°C. Lyophilized MmCAR precipitate gave 48% yield of E/Z-nonanal-4-nitrobenzoyloxime from the reduction of nonanoic acid and in-situ derivatization with O-4-nitrobenzoyl-hydroxylamine. Furthermore, K. phaffii could successfully secrete the MmCAR adenylation domain. Its activity was confirmed by the amidation of benzoic acid with n-hexylamine. Neither enzyme variant was glycosylated by the yeast. In summary, functional CAR can be secreted by K. phaffii and used for cell free conversion of carboxylic acids to various products.


Assuntos
Ácidos Carboxílicos , Oxirredutases , Ácidos Carboxílicos/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Álcoois
17.
J Biotechnol ; 393: 161-169, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39122015

RESUMO

2-Hydroxy-3-pentanone and 3-hydroxy-2-pentanone are flavor molecules present in various foods, such as cheese, wine, durian, and honey, where they impart buttery, hay-like, and caramel-sweet aromas. However, their utilization as flavoring agents is constrained by a lack of developed synthesis methods. In this study, we present their synthesis from simple starting compounds available in natural quality, catalyzed by previously characterized ThDP-dependent carboligases. Additionally, we demonstrate that newly discovered homologues of pyruvate dehydrogenase from E. coli (EcPDH E1), namely LaPDH from Leclercia adecarboxylata, CnPDH from Cupriavidus necator, and TcPDH from Tanacetum cinerariifolium, exhibit promising potential for α-hydroxy pentanone synthesis in form of whole-cell biocatalysts. Enzyme stability at varying pH levels, kinetic parameters, and reaction intensification were investigated. CnPDH, for example, exhibits superior stability across different pH levels compared to EcPDH E1. Both α-hydroxy pentanones can be produced with CnPDH in satisfactory yields (74% and 59%, respectively).


Assuntos
Pentanonas , Pentanonas/metabolismo , Pentanonas/química , Escherichia coli/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Cinética , Concentração de Íons de Hidrogênio
18.
J Biotechnol ; 384: 12-19, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373531

RESUMO

Nitriles have a wide range of uses as building blocks, solvents, and alternative fuels, but also as intermediates and components of flavors and fragrances. The enzymatic synthesis of nitriles by aldoxime dehydratase (Oxd) is an emerging process with significant advantages over conventional approaches. Here we focus on the immobilization of His-tagged Oxds on metal affinity resins, an approach that has not been used previously for these enzymes. The potential of the immobilized Oxd was demonstrated for the synthesis of phenylacetonitrile (PAN) and E-cinnamonitrile, compounds applicable in the fragrance industry. A comparison of Talon and Ni-NTA resins showed that Ni-NTA with its higher binding capacity was more suitable for the immobilization of Oxd. Immobilized Oxds were prepared from purified enzymes (OxdFv from Fusarium vanettenii and OxdBr1 from Bradyrhizobium sp.) or the corresponding cell-free extracts. The immobilization of cell-free extracts reduced time and cost of the catalyst production. The immobilized OxdBr1 was superior in terms of recyclability (22 cycles) in the synthesis of PAN from 15 mM E/Z-phenylacetaldoxime at pH 7.0 and 30 °C (100% conversion, 61% isolated yield after product purification). The volumetric and catalyst productivity was 10.5 g/L/h and 48.3 g/g of immobilized protein, respectively.


Assuntos
Hidroliases , Odorantes , Hidroliases/metabolismo , Nitrilas/metabolismo , Oximas/química , Oximas/metabolismo , Enzimas Imobilizadas
19.
Chemistry ; 19(22): 7007-12, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23595998

RESUMO

Nitrile reductase QueF catalyzes the reduction of 2-amino-5-cyanopyrrolo[2,3-d]pyrimidin-4-one (preQ0) to 2-amino-5-aminomethylpyrrolo[2,3-d]pyrimidin-4-one (preQ1) in the biosynthetic pathway of the hypermodified nucleoside queuosine. It is the only enzyme known to catalyze a reduction of a nitrile to its corresponding primary amine and could therefore expand the toolbox of biocatalytic reactions of nitriles. To evaluate this new oxidoreductase for application in biocatalytic reactions, investigation of its substrate scope is prerequisite. We report here an investigation of the active site binding properties and the substrate scope of nitrile reductase QueF from Escherichia coli. Screenings with simple nitrile structures revealed high substrate specificity. Consequently, binding interactions of the substrate to the active site were identified based on a new homology model of E. coli QueF and modeled complex structures of the natural and non-natural substrates. Various structural analogues of the natural substrate preQ0 were synthesized and screened with wild-type QueF from E. coli and several active site mutants. Two amino acid residues Cys190 and Asp197 were shown to play an essential role in the catalytic mechanism. Three non-natural substrates were identified and compared to the natural substrate regarding their specific activities by using wild-type and mutant nitrile reductase.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Oxirredutases/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Proteínas de Escherichia coli/genética , Nucleosídeo Q/metabolismo , Oxirredução , Oxirredutases/genética , Pirimidinonas/química , Pirimidinonas/metabolismo , Pirróis/química , Pirróis/metabolismo , Especificidade por Substrato
20.
Bioorg Med Chem Lett ; 23(11): 3393-5, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23608762

RESUMO

Yarrowia lipolytica short chain dehydrogenase/reductase (YlSDR) was expressed in Escherichia coli, purified and characterized in vitro. The substrate scope for YlSDR mediated oxidation was investigated with alcohols and unprotected carbohydrates spectrophotometrically, revealing a preference for secondary compared to primary alcohols. In reduction direction, YlSDR was highly active on ribulose and fructose, suggesting that the enzyme is a mannitol-2-dehydrogenase. In order to explore substrate tolerance especially for space-demanding, lipophilic protecting groups, 5-O-trityl-D-ribitol and 5-O-trityl-α,ß-D-ribose were investigated as substrates: YlSDR oxidized 5-O-trityl-D-ribitol and 5-O-trityl-α,ß-D-ribose and reduced the latter at the expense of NADP(H).


Assuntos
Ácido Graxo Sintases/metabolismo , NADH NADPH Oxirredutases/metabolismo , Pentoses/metabolismo , Ribitol/metabolismo , Yarrowia/enzimologia , Escherichia coli/metabolismo , Ácido Graxo Sintases/genética , Frutose/metabolismo , Cinética , Manitol Desidrogenases/genética , Manitol Desidrogenases/metabolismo , NADH NADPH Oxirredutases/genética , NADP/metabolismo , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Ribose/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA