Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 20(1): 314-330, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36374573

RESUMO

Triple-negative breast cancer (TNBC) patients with brain metastasis (BM) face dismal prognosis due to the limited therapeutic efficacy of the currently available treatment options. We previously demonstrated that paclitaxel-loaded PLGA-PEG nanoparticles (NPs) directed to the Fn14 receptor, termed "DARTs", are more efficacious than Abraxane─an FDA-approved paclitaxel nanoformulation─following intravenous delivery in a mouse model of TNBC BM. However, the precise basis for this difference was not investigated. Here, we further examine the utility of the DART drug delivery platform in complementary xenograft and syngeneic TNBC BM models. First, we demonstrated that, in comparison to nontargeted NPs, DART NPs exhibit preferential association with Fn14-positive human and murine TNBC cell lines cultured in vitro. We next identified tumor cells as the predominant source of Fn14 expression in the TNBC BM-immune microenvironment with minimal expression by microglia, infiltrating macrophages, monocytes, or lymphocytes. We then show that despite similar accumulation in brains harboring TNBC tumors, Fn14-targeted DARTs exhibit significant and specific association with Fn14-positive TNBC cells compared to nontargeted NPs or Abraxane. Together, these results indicate that Fn14 expression primarily by tumor cells in TNBC BMs enables selective DART NP delivery to these cells, likely driving the significantly improved therapeutic efficacy observed in our prior work.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Microambiente Tumoral
2.
Glia ; 69(9): 2059-2076, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33638562

RESUMO

Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Glioma , Sarcoma , Animais , Vírus do Sarcoma Aviário/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Vírus Oncogênicos , Receptores Virais , Microambiente Tumoral
3.
Glia ; 69(9): 2199-2214, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991013

RESUMO

High-grade gliomas (HGGs) are aggressive, treatment-resistant, and often fatal human brain cancers. The TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) signaling axis is involved in tissue repair after injury and constitutive signaling has been implicated in the pathogenesis of numerous solid cancers. The Fn14 gene is expressed at low levels in the normal, uninjured brain but is highly expressed in primary isocitrate dehydrogenase wild-type and recurrent HGGs. Fn14 signaling is implicated in numerous aspects of glioma biology including brain invasion and chemotherapy resistance, but whether Fn14 overexpression can directly promote tumor malignancy has not been reported. Here, we used the replication-competent avian sarcoma-leukosis virus/tumor virus A system to examine the impact of Fn14 expression on glioma development and pathobiology. We found that the sole addition of Fn14 to an established oncogenic cocktail previously shown to generate proneural-like gliomas led to the development of highly invasive and lethal brain cancer with striking biological features including extensive pseudopalisading necrosis, constitutive canonical and noncanonical NF-κB pathway signaling, and high plasminogen activator inhibitor-1 (PAI-1) expression. Analyses of HGG patient datasets revealed that high human PAI-1 gene (SERPINE1) expression correlates with shorter patient survival, and that the SERPINE1 and Fn14 (TNFRSF12A) genes are frequently co-expressed in bulk tumor tissues, in tumor subregions, and in malignant cells residing in the tumor microenvironment. These findings provide new insights into the potential importance of Fn14 in human HGG pathobiology and designate both the NF-κB signaling node and PAI-1 as potential targets for therapeutic intervention. MAIN POINTS: This work demonstrates that elevated levels of the TWEAK receptor Fn14 in tumor-initiating, neural progenitor cells leads to the transformation of proneural-like gliomas into more aggressive and lethal tumors that exhibit constitutive NF-κB pathway activation and plasminogen activator inhibitor-1 overexpression.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Fatores de Crescimento de Fibroblastos , Glioma/patologia , Humanos , Invasividade Neoplásica , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor de TWEAK , Microambiente Tumoral
4.
Nanomedicine ; 20: 102024, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176045

RESUMO

Therapeutic efficacy of nanoparticle-drug formulations for cancer applications is significantly impacted by the extent of intra-tumoral accumulation and tumor tissue penetration. We advanced the application of surface plasmon resonance to examine interfacial properties of various clinical and emerging nanoparticles related to tumor tissue penetration. We observed that amine-terminated or positively-charged dendrimers and liposomes bound strongly to tumor extracellular matrix (ECM) proteins, whereas hydroxyl/carboxyl-terminated dendrimers and PEGylated/neutrally-charged liposomes did not bind. In addition, poly(lactic-co-glycolic acid) (PLGA) nanoparticles formulated with cholic acid or F127 surfactants bound strongly to tumor ECM proteins, whereas nanoparticles formulated with poly(vinyl alcohol) did not bind. Unexpectedly, following blood serum incubation, this binding increased and particle transport in ex vivo tumor tissues reduced markedly. Finally, we characterized the protein corona on PLGA nanoparticles using quantitative proteomics. Through these studies, we identified valuable criteria for particle surface characteristics that are likely to mediate their tissue binding and tumor penetration.


Assuntos
Nanopartículas/química , Neoplasias/metabolismo , Ressonância de Plasmônio de Superfície , Animais , Transporte Biológico , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Dendrímeros/química , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Lipossomos , Camundongos Nus , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ligação Proteica , Coroa de Proteína/química , Propriedades de Superfície , Tensoativos/química
5.
J Neurooncol ; 140(3): 497-507, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30132163

RESUMO

INTRODUCTION: Emerging evidence suggests that effective treatment of glioblastoma (GBM), the most common and deadly form of adult primary brain cancer, will likely require concurrent treatment of multiple aspects of tumor pathobiology to overcome tumor heterogeneity and the complex tumor-supporting microenvironment. Recent studies in non-central nervous system (CNS) tumor cells have demonstrated that oxaliplatin (OXA) can induce multi-faceted anti-tumor effects, in particular at drug concentrations below those required to induce apoptosis. These findings motivated re-investigation of OXA for the treatment of GBM. METHODS: The effects of OXA on murine KR158 and GL261 glioma cells including cell growth, cell death, inhibition of signal transducer and activator of transcription (STAT) activity, O-6-methylguanine-DNA methyltransferase (MGMT) expression, and immunogenic cell death (ICD) initiation, were evaluated by cytotoxicity assays, Western blot analysis, STAT3-luciferase reporter assays, qRT-PCR assays, and flow cytometry. Chemical inhibitors of endoplasmic reticulum (ER) stress were used to investigate the contribution of this cell damage response to the observed OXA effects. The effect of OXA on bone marrow-derived macrophages (BMDM) exposed to glioma conditioned media (GCM) was also analyzed by Western blot analysis. RESULTS: We identified the OXA concentration threshold for induction of apoptosis and from this determined the drug dose and treatment period for sub-cytotoxic treatments of glioma cells. Under these experimental conditions, OXA reduced STAT3 activity, reduced MGMT levels and increased temozolomide sensitivity. In addition, there was evidence of immunogenic cell death (elevated EIF2α phosphorylation and calreticulin exposure) following prolonged OXA treatment. Notably, inhibition of ER stress reversed the OXA-mediated inhibition of STAT3 activity and MGMT expression in the tumor cells. In BMDMs exposed to GCM, OXA also reduced levels of phosphorylated STAT3 and decreased expression of Arginase 1, an enzyme known to contribute to pro-tumor functions in the tumor-immune environment. CONCLUSIONS: OXA can induce notable multi-faceted biological effects in glioma cells and BMDMs at relatively low drug concentrations. These findings may have significant therapeutic relevance against GBM and warrant further investigation.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Macrófagos/metabolismo , Oxaliplatina/farmacologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Glioma/tratamento farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Fator de Transcrição STAT3/metabolismo , Temozolomida
6.
J Neurooncol ; 138(2): 241-250, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29453678

RESUMO

The TNF receptor superfamily member Fn14 is overexpressed by many solid tumor types, including glioblastoma (GBM), the most common and lethal form of adult brain cancer. GBM is notable for a highly infiltrative growth pattern and several groups have reported that high Fn14 expression levels can increase tumor cell invasiveness. We reported previously that the mesenchymal and proneural GBM transcriptomic subtypes expressed the highest and lowest levels of Fn14 mRNA, respectively. Given the recent histopathological re-classification of human gliomas by the World Health Organization based on isocitrate dehydrogenase 1 (IDH1) gene mutation status, we extended this work by comparing Fn14 gene expression in IDH1 wild-type (WT) and mutant (R132H) gliomas and in cell lines engineered to overexpress the IDH1 R132H enzyme. We found that both low-grade and high-grade (i.e., GBM) IDH1 R132H gliomas exhibit low Fn14 mRNA and protein levels compared to IDH1 WT gliomas. Forced overexpression of the IDH1 R132H protein in glioma cells reduced Fn14 expression, while treatment of IDH1 R132H-overexpressing cells with the IDH1 R132H inhibitor AGI-5198 or the DNA demethylating agent 5-aza-2'-deoxycytidine increased Fn14 expression. These results support a role for Fn14 in the more aggressive and invasive phenotype associated with IDH1 WT tumors and indicate that the low levels of Fn14 gene expression noted in IDH1 R132H mutant gliomas may be due to epigenetic regulation via changes in DNA methylation.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/metabolismo , Mutação , Receptor de TWEAK/metabolismo , Biomarcadores Tumorais/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Citocina TWEAK/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Gradação de Tumores , RNA Mensageiro/metabolismo , Estudos Retrospectivos
7.
J Biol Chem ; 289(19): 12976-88, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24652288

RESUMO

Fibroblast growth factor-inducible 14 (Fn14) is a highly inducible cytokine receptor that engages multiple intracellular signaling pathways, including nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Fn14 expression is regulated by several cytokines and growth factors, and Fn14 is transiently up-regulated after injury. In contrast, in states of chronic inflammatory disease and in some solid tumors, Fn14 is persistently up-regulated. However, the post-translational regulation of Fn14 expression has not been directly investigated. Thus, we examined Fn14 proteostasis in the presence and absence of the Fn14 ligand TNF-like weak inducer of apoptosis (TWEAK). Similar to other TNF receptor superfamily members, we found that TWEAK induces Fn14 internalization and degradation. Surprisingly, we also observed rapid, TWEAK-independent, constitutive Fn14 internalization and turnover. Fn14 levels are maintained in cell culture by ongoing synthesis and trafficking of the receptor, leading to subsequent down-regulation by lysosomal degradation. Unexpectedly, the extracellular domain of Fn14 is necessary and sufficient for constitutive turnover. Based on these findings, we propose a model in which constitutive down-regulation of Fn14 facilitates dynamic regulation of Fn14 protein levels and prevents spontaneous or inappropriate receptor signaling.


Assuntos
Regulação da Expressão Gênica/fisiologia , Lisossomos/metabolismo , Proteólise , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Animais , Citocina TWEAK , Células HEK293 , Células HeLa , Humanos , Lisossomos/genética , Camundongos , Camundongos Knockout , Transporte Proteico/fisiologia , Receptores do Fator de Necrose Tumoral/genética , Receptor de TWEAK , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo
8.
Carcinogenesis ; 35(1): 218-26, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23975833

RESUMO

The long-term survival of patients with glioblastoma is compromised by the proclivity for local invasion into the surrounding normal brain, escaping surgical resection and contributing to therapeutic resistance. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell invasion via binding to fibroblast growth factor-inducible 14 (Fn14) and subsequent activation of the Rho guanosine triphosphatase family member Rac1. Here, we demonstrate that TWEAK acts as a chemotactic factor for glioma cells, a potential process for driving cell invasion into the surrounding brain tissue. TWEAK exposure induced the activation of Src family kinases (SFKs), and pharmacologic suppression of SFK activity inhibited TWEAK-induced chemotactic migration. We employed a multiplexed Luminex assay and identified Lyn as a candidate SFK activated by TWEAK. Depletion of Lyn suppressed TWEAK-induced chemotaxis and Rac1 activity. Furthermore, Lyn gene expression levels increase with primary glioma tumor grade and inversely correlate with patient survival. These results show that TWEAK-induced glioma cell chemotaxis is dependent upon Lyn kinase function and, thus, provides opportunities for therapeutic targeting of this deadly disease.


Assuntos
Neoplasias Encefálicas/patologia , Quimiotaxia/fisiologia , Glioblastoma/patologia , Fatores de Necrose Tumoral/metabolismo , Quinases da Família src/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Movimento Celular , Citocina TWEAK , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Ratos Wistar , Fatores de Necrose Tumoral/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/genética
9.
Biomedicines ; 12(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38927437

RESUMO

Infiltrating gliomas are challenging to treat, as the blood-brain barrier significantly impedes the success of therapeutic interventions. While some clinical trials for high-grade gliomas have shown promise, patient outcomes remain poor. Microbubble-enhanced focused ultrasound (MB-FUS) is a rapidly evolving technology with demonstrated safety and efficacy in opening the blood-brain barrier across various disease models, including infiltrating gliomas. Initially recognized for its role in augmenting drug delivery, the potential of MB-FUS to augment liquid biopsy and immunotherapy is gaining research momentum. In this review, we will highlight recent advancements in preclinical and clinical studies that utilize focused ultrasound to treat gliomas and discuss the potential future uses of image-guided precision therapy using focused ultrasound.

10.
Nano Today ; 562024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38854931

RESUMO

Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.

11.
Am J Pathol ; 181(1): 111-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22634180

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide; approximately 85% of these cancers are non-small cell lung cancer (NSCLC). Patients with NSCLC frequently have tumors harboring somatic mutations in the epidermal growth factor receptor (EGFR) gene that cause constitutive receptor activation. These patients have the best clinical response to EGFR tyrosine kinase inhibitors (TKIs). Herein, we show that fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is frequently overexpressed in NSCLC tumors, and Fn14 levels correlate with p-EGFR expression. We also report that NSCLC cell lines that contain EGFR-activating mutations show high levels of Fn14 protein expression. EGFR TKI treatment of EGFR-mutant HCC827 cells decreased Fn14 protein levels, whereas EGF stimulation of EGFR wild-type A549 cells transiently increased Fn14 expression. Furthermore, Fn14 is highly expressed in EGFR-mutant H1975 cells that also contain an EGFR TKI-resistance mutation, and high TKI doses are necessary to reduce Fn14 levels. Constructs encoding EGFRs with activating mutations induced Fn14 expression when expressed in rat lung epithelial cells. We also report that short hairpin RNA-mediated Fn14 knockdown reduced NSCLC cell migration and invasion in vitro. Finally, Fn14 overexpression enhanced NSCLC cell migration and invasion in vitro and increased experimental lung metastases in vivo. Thus, Fn14 may be a novel therapeutic target for patients with NSCLC, in particular for those with EGFR-driven tumors who have either primary or acquired resistance to EGFR TKIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Movimento Celular/fisiologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Cloridrato de Erlotinib , Técnicas de Silenciamento de Genes , Genes ras/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Mutação , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Transplante de Neoplasias , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Ratos , Receptores do Fator de Necrose Tumoral/biossíntese , Receptores do Fator de Necrose Tumoral/deficiência , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais/fisiologia , Receptor de TWEAK , Células Tumorais Cultivadas
12.
ACS Nano ; 17(20): 19667-19684, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812740

RESUMO

The TWEAK receptor, Fn14, is a promising candidate for active targeting of cancer nanotherapeutics to many solid tumor types, including metastatic breast and primary brain cancers. Targeting of therapeutic nanoparticles (NPs) has been accomplished using a range of targeting moieties including monoclonal antibodies and related fragments, peptides, and small molecules. Here, we investigated a full-length Fn14-specific monoclonal antibody, ITEM4, or an ITEM4-Fab fragment as a targeting moiety to guide the development of a clinical formulation. We formulated NPs with varying densities of the targeting moieties while maintaining the decreased nonspecific adhesivity with receptor targeting (DART) characteristics. To model the conditions that NPs experience following intravenous infusion, we investigated the impact of serum exposure in relation to the targeting moiety type and surface density. To further evaluate performance at the cancer cell level, we performed experiments to assess differences in cellular uptake and trafficking in several cancer cell lines using confocal microscopy, imaging flow cytometry, and total internal reflection fluorescence microscopy. We observed that Fn14-targeted NPs exhibit enhanced cellular uptake in Fn14-high compared to Fn14-low cancer cells and that in both cell lines uptake levels were greater than observed with control, nontargeted NPs. We found that serum exposure increased Fn14-targeted NP specificity while simultaneously reducing the total NP uptake. Importantly, serum exposure caused a larger reduction in cancer cell uptake over time when the targeting moiety was an antibody fragment (Fab region of the monoclonal antibody) compared with the full-length monoclonal antibody targeting moiety. Lastly, we uncovered that full monoclonal antibody-targeted NPs enter cancer cells via clathrin-mediated endocytosis and traffic through the endolysosomal pathway. Taken together, these results support a pathway for developing a clinical formulation using a full-length Fn14 monoclonal antibody as the targeting moiety for a DART cancer nanotherapeutic agent.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/metabolismo , Linhagem Celular Tumoral , Anticorpos Monoclonais , Nanopartículas/química
13.
J Neurosci ; 31(30): 10836-46, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21795536

RESUMO

We have identified a novel low-density lipoprotein (LDL) receptor family member, termed LDL receptor class A domain containing 3 (LRAD3), which is expressed in neurons. The LRAD3 gene encodes an ∼50 kDa type I transmembrane receptor with an ectodomain containing three LDLa repeats, a transmembrane domain, and a cytoplasmic domain containing a conserved dileucine internalization motif and two polyproline motifs with potential to interact with WW-domain-containing proteins. Immunohistochemical analysis of mouse brain reveals LRAD3 expression in the cortex and hippocampus. In the mouse hippocampal-derived cell line HT22, LRAD3 partially colocalizes with amyloid precursor protein (APP) and interacts with APP as revealed by coimmunoprecipitation experiments. To identify the portion of APP that interacts with LRAD3, we used solid-phase binding assays that demonstrated that LRAD3 failed to bind to a soluble APP fragment (sAPPα) released after α-secretase cleavage. In contrast, C99, the ß-secretase product that remains cell associated, coprecipitated with LRAD3, confirming that regions within this portion of APP are important for associating with LRAD3. The association of LRAD3 with APP increases the amyloidogenic pathway of APP processing, resulting in a decrease in sAPPα production and increased Aß peptide production. Pulse-chase experiments confirm that LRAD3 expression significantly decreases the cellular half-life of mature APP. These results reveal that LRAD3 influences APP processing and raises the possibility that LRAD3 alters APP function in neurons, including its downstream signaling.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Receptores de LDL/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , Córtex Cerebral/citologia , Chlorocebus aethiops , Cricetinae , Embrião de Mamíferos , Endocitose/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunoprecipitação/métodos , Camundongos , Peso Molecular , Neurônios/metabolismo , Ligação Proteica/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Análise de Sequência de Proteína , Transfecção/métodos
14.
Artigo em Inglês | MEDLINE | ID: mdl-35735205

RESUMO

Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Terapia a Laser , Nanopartículas , Humanos , Terapia a Laser/efeitos adversos , Terapia a Laser/métodos , Lasers , Imageamento por Ressonância Magnética/métodos , Nanopartículas/uso terapêutico
15.
Adv Drug Deliv Rev ; 188: 114415, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35787387

RESUMO

Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Humanos , Microambiente Tumoral
16.
Oncogene ; 41(50): 5361-5372, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344676

RESUMO

Glioma stem cells (GSCs) promote tumor progression and therapeutic resistance and exhibit remarkable bioenergetic and metabolic plasticity, a phenomenon that has been linked to their ability to escape standard and targeted therapies. However, specific mechanisms that promote therapeutic resistance have been somewhat elusive. We hypothesized that because GSCs proliferate continuously, they may require the salvage and de novo nucleotide synthesis pathways to satisfy their bioenergetic needs. Here, we demonstrate that GSCs lacking EGFR (or EGFRvIII) amplification are exquisitely sensitive to de novo pyrimidine synthesis perturbations, while GSCs that amplify EGFR are utterly resistant. Furthermore, we show that EGFRvIII promotes BAY2402234 resistance in otherwise BAY2402234 responsive GSCs. Remarkably, a novel, orally bioavailable, blood-brain-barrier penetrating, dihydroorotate dehydrogenase (DHODH) inhibitor BAY2402234 was found to abrogate GSC proliferation, block cell-cycle progression, and induce DNA damage and apoptosis. When dosed daily by oral gavage, BAY2402234 significantly impaired the growth of two different intracranial human glioblastoma xenograft models in mice. Given this observed efficacy and the previously established safety profiles in preclinical animal models and human clinical trials, the clinical testing of BAY2402234 in patients with primary glioblastoma that lacks EGFR amplification is warranted.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Camundongos , Animais , Di-Hidro-Orotato Desidrogenase , Células-Tronco Neoplásicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Dano ao DNA , Proliferação de Células , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
17.
J Biol Chem ; 285(23): 17432-41, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20385556

RESUMO

Tumor necrosis factor (TNF) family members are initially synthesized as type II transmembrane proteins, but some of these proteins are substrates for proteolytic enzymes that generate soluble cytokines with biological activity. TWEAK (TNF-like weak inducer of apoptosis), a member of the TNF family, is a multifunctional cytokine that acts via binding to a cell surface receptor named Fn14 (fibroblast growth factor-inducible 14). Studies conducted to date indicate that TWEAK-producing cells can co-express both membrane-anchored and soluble TWEAK isoforms, but there is little information on TWEAK proteolytic processing. Also, it is presently unclear whether membrane-anchored TWEAK, like soluble TWEAK, is biologically active. Here we show that full-length human TWEAK is processed intracellularly by the serine protease furin and identify TWEAK amino acid residues 90-93 as the predominant furin recognition site. In addition, we report that full-length, membrane-anchored TWEAK can bind the Fn14 receptor on neighboring cells and activate the NF-kappaB signaling pathway. Thus, TWEAK can act in a juxtacrine manner to initiate cellular responses, and this property may be important for TWEAK function during physiological wound repair and disease pathogenesis.


Assuntos
NF-kappa B/metabolismo , Fatores de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/metabolismo , Separação Celular , Citocina TWEAK , Epitopos/química , Citometria de Fluxo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Peptídeos/química , Receptores do Fator de Necrose Tumoral/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Receptor de TWEAK
18.
Drug Deliv Transl Res ; 11(6): 2344-2370, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34716900

RESUMO

Brain metastases (BMs) are the most common type of brain tumor, and the incidence among breast cancer (BC) patients has been steadily increasing over the past two decades. Indeed, ~ 30% of all patients with metastatic BC will develop BMs, and due to few effective treatments, many will succumb to the disease within a year. Historically, patients with BMs have been largely excluded from clinical trials investigating systemic therapies including immunotherapies (ITs) due to limited brain penetration of systemically administered drugs combined with previous assumptions that BMs are poorly immunogenic. It is now understood that the central nervous system (CNS) is an immunologically distinct site and there is increasing evidence that enhancing immune responses to BCBMs will improve patient outcomes and the efficacy of current treatment regimens. Progress in IT for BCBMs, however, has been slow due to several intrinsic limitations to drug delivery within the brain, substantial safety concerns, and few known targets for BCBM IT. Emerging studies demonstrate that nanomedicine may be a powerful approach to overcome such limitations, and has the potential to greatly improve IT strategies for BMs specifically. This review summarizes the evidence for IT as an effective strategy for BCBM treatment and focuses on the nanotherapeutic strategies currently being explored for BCBMs including targeting the blood-brain/tumor barrier (BBB/BTB), tumor cells, and tumor-supporting immune cells for concentrated drug release within BCBMs, as well as use of nanoparticles (NPs) for delivering immunomodulatory agents, for inducing immunogenic cell death, or for potentiating anti-tumor T cell responses.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Nanopartículas , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Humanos , Imunoterapia , Nanomedicina
19.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32958685

RESUMO

BACKGROUND: Antibody-drug conjugates are an exceptional and useful therapeutic tool for multiple diseases, particularly for cancer treatment. We previously showed that the fusion of the serine protease granzyme B (GrB), the effector molecule or T and B cells, to a binding domain allows the controlled and effective delivery of the cytotoxic payload into the target cell. The production of these constructs induced the formation of high molecular aggregates with a potential impact on the efficacy and safety of the protein. METHODS: Our laboratory designed a new Fn14 targeted fusion construct designated GrB(C210A)-Fc-IT4 which contains a modified GrB payload for improved protein production and preserved biological activity. We assessed the construct's enzymatic activity, as well as in vitro cytotoxicity and internalization into target cells. We also assessed pharmacokinetics, efficacy and toxicology parameters in vivo. RESULTS: GrB(C210A)-Fc-IT4 protein exhibited high affinity and selective cytotoxicity within the nanomolar range when tested against a panel of Fn14-positive human cancer cell lines. The construct rapidly internalized into target cells, activating the caspase cascade and causing mitochondrial membrane depolarization. Pharmacokinetic studies in mice revealed that GrB(C210A)-Fc-IT4 displayed a bi-exponential clearance from plasma with a fast initial clearance (t1/2α=0.36 hour) followed by a prolonged terminal-phase plasma half-life (t1/2ß=35 hours). Mice bearing MDA-MB-231 orthotopic tumor xenografts treated with vehicle or GrB(C210A)-Fc-IT4 construct (QODx5) demonstrated tumor regression and long-term (>80 days) suppression of tumor growth. Treatment of mice bearing established, subcutaneous A549 lung tumors showed impressive, long-term tumor suppression compared with a control group treated with vehicle alone. Administration of GrB(C210A)-Fc-IT4 (100 mg/kg total dose) was well-tolerated by mice and resulted in significant reduction of tumor burden in a lung cancer patient-derived xenograft model. Toxicity studies revealed no statistically significant changes in aspartate transferase, alanine transferase or lactate dehydrogenase in treated mice. Histopathological analysis of tissues from treated mice did not demonstrate any specific drug-related changes. CONCLUSION: GrB(C210A)-Fc-IT4 demonstrated excellent, specific cytotoxicity in vitro and impressive in vivo efficacy with no significant toxicity in normal murine models. These studies show GrB(C210A)-Fc-IT4 is an excellent candidate for further preclinical development.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Granzimas/metabolismo , Receptor de TWEAK/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Nus
20.
Sci Adv ; 6(3): eaax3931, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31998833

RESUMO

Development of effective tumor cell-targeted nanodrug formulations has been quite challenging, as many nanocarriers and targeting moieties exhibit nonspecific binding to cellular, extracellular, and intravascular components. We have developed a therapeutic nanoparticle formulation approach that balances cell surface receptor-specific binding affinity while maintaining minimal interactions with blood and tumor tissue components (termed "DART" nanoparticles), thereby improving blood circulation time, biodistribution, and tumor cell-specific uptake. Here, we report that paclitaxel (PTX)-DART nanoparticles directed to the cell surface receptor fibroblast growth factor-inducible 14 (Fn14) outperformed both the corresponding PTX-loaded, nontargeted nanoparticles and Abraxane, an FDA-approved PTX nanoformulation, in both a primary triple-negative breast cancer (TNBC) model and an intracranial model reflecting TNBC growth following metastatic dissemination to the brain. These results provide new insights into methods for effective development of therapeutic nanoparticles as well as support the continued development of the DART platform for primary and metastatic tumors.


Assuntos
Antineoplásicos/administração & dosagem , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Terapia de Alvo Molecular , Nanopartículas , Nanomedicina Teranóstica , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Modelos Animais de Doenças , Matriz Extracelular , Feminino , Expressão Gênica , Humanos , Camundongos , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro , Receptor de TWEAK/genética , Distribuição Tecidual , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/etiologia , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA